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Theory of electric field effect on the optical properties of elliptical 

quantum wire 

In the approximation of the effective mass, the electric field effect on the optical 

properties of the elliptical quantum wire (EQW) was investigated. In an elliptic 

coordinate system, exact solutions of the Schrödinger equation for an electron in 

an EQW with hard walls are obtained. The energy spectrum of a quasiparticle 

consists of energies of even and odd states, whose wave functions are expressed 

through even and odd Mathieu functions of the first kind. Using these solutions, 

an orthonormal basis was constructed. The influence of the electric field 

perpendicular to the quantum wire and parallel to the ellipse's major axis on the 

energies and forces of the oscillators of quantum electron transitions was 

calculated using the matrix method. It is shown that the ellipticity of the quantum 

wire leads to the removal of the degeneracy of the energy spectrum of 

quasiparticles, since the energies of even and odd electronic states depend 

differently on the ratio of the EQW semi-axes. The electron's ground state is the 

even state, which is nondegenerate because there is no corresponding odd state. 

The electric field has a greater effect on energy states with a lower value of the 

magnetic quantum number. As the electric field strength increases, the energies 

of even and odd states shift to the region of lower energies. The distribution of 

the electron density of the ground state shifts the most in the direction opposite to 

the direction of the electric field. This leads to a decrease in the strength of the 

oscillators of quantum transitions with an increase in the intensity of the electric 

field.  

Keywords: elliptic quantum wire; energy spectrum; electric field; quantum 

transition; oscillators strength; matrix method. 

Introduction 

Semiconductor quantum nanostructures, including quantum wells, quantum wires, and 

quantum dots (QDs), demonstrate distinctive electronic and optical properties, making 

them subjects of extensive theoretical and experimental research by numerous scientists. 

Remarkable technological advancements for growing semiconductor 

nanostructures have made it possible to obtain quantum dots and quantum wires of 



 

 

various shapes and sizes. Changing the size and shape of nanostructures leads to 

changes in their optical properties due to changes in the energy spectrum and wave 

functions of quasiparticles. In addition, external electric and magnetic fields affect the 

energy spectrum of quasiparticles. For the possibility of using nanostructures in real 

devices, many authors perform theoretical studies of the influence of shape, size, and 

external fields on the energies and oscillator strength of quantum transitions, which 

form the optical properties of nanostructures. Currently, in addition to the simplest 

spherical and cylindrical nanosystems, ellipsoidal [1-6], pyramidal [7-8], and lens-

shaped quantum dots [9], elliptical rings [10-11], and elliptical quantum wires [12-17] 

are intensively studied. For this studies, various methods to solve the Schrödinger 

equation for an electron in nanostructures of various shapes are used. For spherical and 

cylindrical nanostructures, analytical solutions of this equation can be obtained, which 

are expressed in terms of Bessel functions. For QDs with the shape of an oblate 

ellipsoid, Kazarian and others obtained exact solutions of the equation in oblate 

spheroidal coordinates [1]. Boychuk et al. obtained the energy spectrum of an electron 

in an ellipsoidal QD using prolate spheroidal coordinates [2]. Sadeghi et al. investigated 

the effect of light polarization on the optical properties of GaAs/AlGaAs ellipsoidal 

quantum dots using the method of coordinate transformations. As a result of solving the 

Schrödinger equation, it is obtained in the form of Hermite polynomials [3]. The energy 

spectrum of electrons in elliptical quantum wires and elliptical nanotubes is obtained 

from exact solutions of the Schrödinger equation in elliptical coordinates [4-6]. Such 

solutions are obtained based on ordinary and modified Mathieu functions of the first and 

second kinds. Studies have shown that the energy spectrum of an electron in an 

elliptical quantum wire consists of energies of even and odd states, whose wave 

functions are expressed in terms of even and odd Mathieu functions, respectively. 



 

 

The exact solutions of the Schrödinger equation are important because, based on 

them, it is possible to build an orthonormal basis for calculating the influence of 

external fields on the optical properties of elliptic-shaped quantum wires. The method of 

diagonalization based on the basis, which takes into account the boundary conditions 

that must be satisfied by the solutions of the problem, has advantages over other 

research methods. This method was used to study the effect of electric and magnetic 

fields on the optical properties of multilayer quantum dots [18-19]. It is shown that the 

results obtained by diagonalization method coincide with the results of the numerical 

solution of the Schrödinger equation obtained by the finite element method. For high 

accuracy, it is enough to take into account a small (5-10) number of terms in the 

expansion of the wave function. As a result, not only the solutions of the Schrödinger 

equation were obtained, but also the values of the partial contributions of the basis 

functions (the wave functions of the states of the unperturbed problem) to the formation 

of new wave functions. In this work, the influence of the electric field on the energy 

spectrum and wave functions of the electron at different ratios of the semi-axes of the 

ellipse is investigated using the diagonalization method based on the orthonormal basis, 

which takes into account the boundary conditions for the elliptic quantum wire. 

Theoretical framework 

The elliptic quantum wire (EQW) GaAs embedded into impenetrable for electron 

matrix is under study. The coordinate system is chosen in such a way that Oz axis is 

directed along the wire axis. The confinement potential in Cartesian coordinates have 

the form 

 𝑈(𝑥, 𝑦) = {
0,   𝑥2/𝑎2 + 𝑦2/𝑏2 ≤ 1,

∞, 𝑥2/𝑎2 + 𝑦2/𝑏2 > 1,
  (1) 



 

 

Where 𝑎 ta 𝑏 are the semi-axes of the ellipse. The electric field applied perpendicular to 

wire axis and along to Ox axis.  An electron can perform a free movement in the 

direction along the quantum wire with energy 𝐸𝑧 = ℏ2𝑘𝑧
2/2𝜇∗, where 𝑘𝑧 – quasiparticle 

longitudinal quasimomentum and µ∗– electron effective mass. The energy caused by the 

transversal movement of quasiparticle is found from the Schrodinger equation 

 −
ℏ2

2𝜇∗ ∆𝛹(𝑥, 𝑦) + (|𝑒| 𝐹 𝑥 + 𝑈(𝑥, 𝑦))𝛹(𝑥, 𝑦) = 𝐸𝛹(𝑥, 𝑦), (2) 

where 𝐹– electric field strength. Equation (2) does not have an exact solution, so we 

first consider the solutions of the Schrödinger equation in the absence of an electric 

field. In elliptical coordinates at 𝐹 = 0, the Schrödinger equation (2) will have the form  

 [
𝜕2

𝜕𝜉2 +
𝜕2

𝜕𝜂2 +
𝑓2𝑘𝑖

2

2
(cosh 2 𝜉 − cos 2 𝜂)] Φ(𝜉, 𝜂) = 0, (3) 

where (ξ, η, z) are elliptic coordinates related to Cartesian coordinates by the following 

relations 

 {
𝑥 = 𝑓 cosh 𝜉 cos 𝜂 ,      0 ≤ 𝜉 < ∞
𝑦 = 𝑓 sinh 𝜉 sin 𝜂 ,    0 ≤ 𝜂 < 2𝜋 
𝑧 = 𝑧,                     − ∞ < 𝑧 < +∞

, (4) 

where 𝑓 = √𝑎2 − 𝑏2 is the focal length, ξ – radial coordinate, and η – angular 

coordinate. The wave function Φ(𝜉, 𝜂) in elliptical coordinates allows separation of 

variables Φ(𝜉, 𝜂) = 𝑅(𝜉)𝜃(𝜂). The quantum states of a quasiparticle are characterized 

by a certain value of the quantum number 𝑚, since the radial 𝑅(𝜉) and angular 𝜃(𝜂) 

parts of the wave function satisfy the characteristic equations of the Mathieu function  

 𝜕2𝜃𝑚(𝜂)/𝜕𝜂2 + (𝑐 − 2𝑞 cos 2 𝜂)𝜃𝑚(𝜂) = 0 (5) 

 𝜕2𝑅𝑚(𝜉)/𝜕𝜉2 − (𝑐 − 2𝑞 cosh 2 𝜉)𝑅𝑚(𝜉) = 0, (6) 



 

 

where 𝑞 = 𝑓2𝑘2/4 and с – separation constant, which is found from the periodicity 

conditions of the angular part of the wave function. Since periodicity conditions can be 

satisfied only by Mathieu functions of the first kind (even – 𝑐𝑒𝑚(𝑞, 𝜂), odd – 

𝑠𝑒𝑚(𝑞, 𝜂)), the angular part of the wave function will have the form  

 𝜃𝑚(𝑞, 𝜂) = {
𝑐𝑒𝑚(𝑞, 𝜂),
𝑠𝑒𝑚(𝑞, 𝜂).

 (7) 

The solutions of the radial equation (6) that satisfy the condition of convergence at 𝜉 →

0 are even – 𝐽𝑒𝑚(𝑞, 𝜉) and odd – 𝐽𝑜𝑚(𝑞, 𝜉) modified Mathieu functions of the first 

kind. Therefore, the energies of the even  𝐸𝑛𝑚
𝑒  and odd 𝐸𝑛𝑚

𝑜  electron states with a 

certain value of the quantum number 𝑚 are determined from the equations 

 
𝐽𝑒𝑚(𝑞, 𝜉)|𝜉=𝜉0

= 0,    𝑚 = 0,1,2, . . .

𝐽𝑜𝑚(𝑞, 𝜉)|𝜉=𝜉0
= 0,      𝑚 = 1,2, . . .

}. (8) 

The values 𝑞 = 𝑞𝑛𝑚
𝑒(𝑜)

= 𝑓2 𝜇

2ℏ2 𝐸𝑛𝑚
𝑒(𝑜)

 that satisfy equation (8) determine the 

energy spectrum of the quasiparticle 𝐸𝑛𝑚
𝑒(𝑜)

, where 𝑛 = 1, 2, . .. is the main quantum 

number, which is equal to the ordinal number of the corresponding equation root, and 

the quantum number 𝑚 is determined by the order of the corresponding Mathieu 

functions. At the same time, as follows from (8), for 𝑚 = 0 there is only an even state 

of a quasiparticle. On the basis of the orthogonal basis of the functions Φ𝑛𝑚
𝑒,𝑜 (𝜉, 𝜂) =

𝑅𝑛𝑚
𝑒,𝑜 (𝜉)𝜃𝑚

𝑒,𝑜(𝜂), which take into account the boundary conditions of the problem, we 

can find the solutions of equation (2). In the case of an electric field directed along the 

х–axis, the new wave functions 𝛹(𝜉, 𝜂) preserve the parity/oddity property, so their 

expansion contains corresponding functions  

 𝛹𝑛′𝑗
𝑒,𝑜(𝜉, 𝜂) = ∑ 𝑐𝑛𝑚

𝑛′𝑗
𝑅𝑛𝑚

𝑒,𝑜 (𝜉)𝜃𝑚
𝑒,𝑜(𝜂)𝑛,𝑚  . (9) 



 

 

The unknown coefficients 𝑐𝑛𝑚
𝑛′𝑗

 and the new energy spectrum 𝐸̃
𝑛′𝑗
𝑒,𝑜

 can be found by the 

method of diagonalization of the corresponding secular equation.  

Using the wave functions (9), it is possible to calculate the dipole moment and 

oscillator strength of the quantum intersubband transition at linear 𝑥- and y-polarization 

of the electromagnetic wave 

 𝐹𝑥
𝑛𝑗−𝑛′𝑗′ =

2𝑚

ℏ2 (𝐸𝑛′𝑗′ − 𝐸𝑛𝑗) < 𝑛𝑗|𝑥|𝑛′𝑗′ >2 (10) 

 𝐹𝑦
𝑛𝑗−𝑛′𝑗′ =

2𝑚

ℏ2
(𝐸𝑛′𝑗′ − 𝐸𝑛𝑗) < 𝑛𝑗|𝑦|𝑛′𝑗′ >2. (11) 

Due to the properties of Mathieu functions, the oscillator strength of quantum 

transitions 𝐹𝑥
𝑛𝑗−𝑛′𝑗′ between even and odd electron states is zero, and for 

𝐹𝑦
𝑛𝑗−𝑛′𝑗′ only mixed transitions (even-odd or odd-even) have a non-zero oscillator 

strength. 

Analysis and discussion of results 

Numerical calculations were performed for an elliptic GaAs quantum wire of equal area 

with a cylindrical wire of radius 𝑟0 = 10 nm, effective electron mass µ∗ = 0.067 𝑚𝑒, 

where 𝑚𝑒 is the mass of a free electron. The electron density distribution in several 

lowest even and odd states in an elliptical quantum wire with the ratio of semi-axes 

𝑎/𝑏 = 2 is shown in Figure 1 (𝑚 = 0,1,2,3 for even states and 𝑚 = 1,2,3,4 for odd 

states). As can be seen from the figure, the distribution of the electron density is 

symmetrical with respect to the axes of the ellipse. Moreover, for all odd states, the 

electron density on the OX axis is zero, and for even states it is nonzero. The number of 

maxima along the Ox axis for odd states is equal to the quantum number m, and for 

even states it is equal to (𝑚 + 1). The number of maxima along the Oy axis for even 

states is equal to 2𝑛 − 1, and for odd states – 2𝑛. 



 

 

 

Figure 1. Distribution of the electron density in the even (1st and 3rd rows, 𝑚 =

0, 1, 2, 3) and odd (2nd row, 𝑚 = 1, … ,4) states in the elliptical quantum wire 𝑎/𝑏 = 2. 

Figure 2 shows the dependence of the energies of even and odd states of an 

electron in an elliptical quantum wire with ratio 𝑎/𝑏=2. For the circle case (𝑎/𝑏 → 1), 

the energies of the even and odd states coincide, and as the a/b ratio increases, the 

energies of the even states have less energy than the odd states, and this energy 

difference increases with the increase of the 𝑎/𝑏 ratio. 
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Figure 2. Dependence of the energy spectrum of an electron in an elliptical GaAs 

quantum wire on the ratio 𝑎/𝑏. 

Figure 3 shows the evolution of the electron density distribution under the 

electric field effect. The electron, as expected, moves in the direction opposite to the 



 

 

direction of the electric field. Moreover, this displacement is smaller for excited states. 

The contribution of various terms in the equation (10) can be estimated by the 

coefficients 𝑐𝑛𝑚
𝑛′𝑗

, the values of which for several lowest states at F=50 kV/cm and a/b=2 

are given in Table 1 for even states and in Table 2 for odd states. It can be seen from the 

tables that the main contribution to the schedule is made by only a few states closest in 

energy. When the electric field becomes stronger, the number of terms that make a 

significant contribution increases. 

 

Figure 3. Distribution of electron density in even and odd states in an EQW at 𝐹 = 50 

and 100 𝑘𝑉/𝑐𝑚 (𝑎/𝑏=2). 

Table 1. Values of the coefficients (𝑐𝑛𝑚
1𝑗

)
2
 for the expansion 𝜓1𝑗

𝑒 (𝑟) at j=0,1,2,3 

(F=50 kV/cm, 𝑟0 = 10 нм, 𝑎/𝑏 = 2). 

𝑟0=10 нм, a/b=2 
| 𝑛, 𝑚 > | 1,0 > | 1,1 > | 1,2 > | 1,3 > | 1,4 > | 1,5 > | 1,6 > 

j Ε̃1𝑗
𝑒 , меВ 𝐸𝑛𝑚

𝑒 , меВ 40.5 71.3 114.0 169.1 236.9 317.6 411.2 

0 27.72 (𝑐𝑛𝑙
10)2 0.7153 0.2569 0.0260 0.0016 0.0001 10-6 10-6 

1 69.6 (𝑐𝑛𝑚
1 )2 0.2661 0.4862 0.2292 0.0175 0.0009 0.00005 10-6 

2 115.4 (𝑐𝑛𝑚
12 )2 0.0179 0.2443 0.5483 0.1798 0.0090 0.0005 10-5 

3 170.8 (𝑐𝑛𝑚
13 )2 0.0006 0.0120 0.1896 0.6543 0.1385 0.0047 0.0003 

 



 

 

Table 2. Values of the coefficients (𝑐𝑛𝑚
1𝑗

)
2
 for the expansion 𝜓1𝑗

𝑜 (𝑟) at j=1,2,3 

(F=50 kV/cm, 𝑟0 = 10 нм, 𝑎/𝑏 = 2). 

𝑟0=10 нм, a/b=2 | 𝑛, 𝑚 > | 1,1 > |1,2 > | 1,3 > | 1,4 > | 1,5 > | 1,6 > | 1,7 > 

j Ε̃1𝑗
𝑜 , меВ 𝐸1𝑚

𝑜 , меВ 181.0 238.9 307.8 387.9 479.5 582.8 697.8 

1 127.4 (𝑐𝑛𝑚
11 )2 0.8866 0.1087 0.0045 0.0002 10-6 10-7 10-8 

2 178.8 (𝑐𝑛𝑚
12 )2 0.1102 0.7654 0.1197 0.0044 0.0002 10-6 10-7 

3 238.5 (𝑐𝑛𝑚
13 )2 0.0031 0.1226 0.7622 0.1087 0.0033 0.0001 10-6 

 

Figure 4 shows the dependence of the energies of the even and odd states on the 

electric field strength. It can be seen from the figure that under the influence of the 

electric field, most of the states are shifted to the region of lower energies, but the 

ground state of the electron undergoes the largest shift. The magnitude of the excited 

state shift decreases with increasing quantum number j. When j>3, the electron energy 

depends little on the electric field, or even has a slight opposite shift to the region of 

higher energies. 
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Figure 4. Dependence of the energy spectrum of an electron in an elliptical quantum 

wire on the electric field strength (energies of even states - a; energies of odd states - b). 

Figure 5 shows the dependences of the energies and oscillator strength of the 

intersubband quantum transitions in an elliptical quantum wire under electric field 

effect. Calculations showed that transitions between quantum states with the same 



 

 

parity are possible only with x-polarization of an electromagnetic wave, and transitions 

between quantum states with different parity are possible only with y-polarization.  
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Figure 5. Dependencies of energies (a, b) and oscillator strength (b, c) of electron 

quantum transitions on the electric field strength between the electron ground state and 

even (a, c) and odd (b, d) excited states. 

It can be seen from Figure 5 that for quantum transitions between the ground 

and excited states with 𝑗 = 1 have the greatest oscillator strength. Moreover, at 𝐹 = 0, 

only transitions with ∆m=±1 are allowed by the selection rules. Under the influence of 

an electric field, the probability of transitions to the next excited states increases. At the 

same time, the Thomas-Kuhn sum rule is fulfilled: the sum of oscillator forces of all 

possible transitions from a given state is a constant value. 



 

 

Conclusion 

The influence of the electric field on the optical properties of elliptical quantum wire 

was theoretically investigated in the effective mass approximation. The wave functions 

and energy spectrum of electrons in an elliptical quantum wire under the influence of an 

electric field were obtained by the diagonalization method using the orthonormal basis 

of wave functions, which are exact solutions of the unperturbed Schrödinger equation. 

The study reveals that an x-polarized electromagnetic wave induces quantum 

transitions from the ground state to even quantum states, while a y-polarized wave leads 

to transitions to odd states. Quantum transitions to the nearest excited state exhibit the 

highest probability, but with an increase in the electric field strength, the likelihood of 

transitions to other excited states also rises. The ellipticity of the quantum wire 

significantly impacts both the energies and the oscillator strength of quantum 

transitions. 
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