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We study equi-Baire 1 families of functions between Polish spaces X and Y . We 
show that the respective ε-gauge in the definition of such a family can be chosen 
upper semi-continuous. We prove that a pointwise convergent sequence of continuous 
functions forms an equi-Baire 1 family. We study families of separately equi-Baire 
1 functions of two variables and show that the family of all sections of separately 
continuous functions also forms an equi-Baire 1 family. We characterize equi-Baire 
1 families of characteristic functions. This leads us to an example witnessing that 
the exact counterpart of the Arzelà-Ascoli theorem for families of real-valued Baire 
1 functions on [0, 1] is false. Also, the weak counterpart of this theorem dealing with 
restrictions to nonmeager sets is false. On the other hand, we obtain a simple proof 
of the Arzelà-Ascoli type theorem for sequences of equi-Baire 1 real-valued functions 
in the case of pointwise convergence.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A function f between metric spaces X and Y is called Baire 1 if it Fσ-measurable, that is, whenever 
the preimage of any open set is Fσ (cf. [11, Definition 24.1]). Note that, in the traditional terminology, 
the notion of Baire 1 function was reserved to the limit of pointwise convergent sequence of continuous 
functions and Fσ-measurable functions were called of Borel class 1. In special cases, for instance if Y = R, 
these two families coincide. In general, every limit of pointwise convergent sequence of continuous functions 
is Fσ-measurable but the converse need not hold (cf. [22, pp. 90–91], [11, Theorem 24.10]).
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We denote R+ := (0, ∞). The following epsilon-delta characterization of Baire 1 functions was obtained 
in [15] (see also [14], [2], [20], [7]).

Theorem 1.1. Let (X, dX) be a separable metric space, and (Y, dY ) be a Polish space. A function f : X → Y

is Baire 1 if and only if, for each ε > 0, there exists a function δfε : X → R+ (called an ε-gauge) such that, 
for all x, x′ ∈ X, the condition dX(x, x′) < min{δfε (x), δfε (x′)} implies dY (f(x), f(x′)) ≤ ε.

We are interested in the Baire 1 analogue of equi-continuity. This notion was invented by Lecomte [14]. 
Recently, it has been rediscovered by Alighani-Koopaei [1]. The idea comes from the characterization stated 
in Theorem 1.1.

Definition 1.2. Let (X, dX), (Y, dY ) be metric spaces. We say that a family F of functions from X to Y is 
equi-Baire 1 if, for each ε > 0, there exists a (Baire 1) function δε : X → R+ such that, for all f ∈ F and 
x, x′ ∈ X, the condition dX(x, x′) < min{δε(x), δε(x′)} implies dY (f(x), f(x′)) ≤ ε.

By Theorem 1.1, if X is a separable metric space and Y is a Polish space, then every member of an 
equi-Baire 1 family of functions from X to Y is a Baire 1 function.

The following characterization of equi-Baire 1 families is due to Lecomte [14, Proposition 32]. For sim-
plicity, we have slightly changed its formulation.

Theorem 1.3. Let (X, dX) be a separable metric space, and (Y, dY ) be a Polish space. For a family F of 
functions from X to Y , the following conditions are equivalent:

(i) F is equi-Baire 1;
(ii) for every ε > 0, there is a cover (Xi)i∈N of X consisting of closed sets such that diam f [Xi] ≤ ε for 

all i ∈ N and f ∈ F ;
(iii) there is a finer metrizable separable topology on X making F equi-continuous;
(iv) every nonempty closed subset E of X contains a point x such that the family {f |E : f ∈ F} is equi-

continuous at x.

Equivalence (i)⇔(ii) was rediscovered later by Alikhani-Koopaei [1, Theorem 3.6]. Condition (ii) formu-
lated for a one-element family has been known as a characterization of a Baire 1 function in various cases. It 
appeared in [8] for X = Y = R, and in [5, Proposition 1.1] if X is a topological space and Y is a separable 
metric space. A more general result, where Y can be non-separable, was shown in [10, Lemma 2].

A definition equivalent to (iv) was formulated by Glasner and Megrelishvili in [9, Def. 6.8] under the 
name barely continuous family. They used it to identify certain subclasses of discrete dynamical systems.

2. How good can ε-gauge for equi-Baire 1 families be?

It was observed in [14, Corollary 33] that a gauge δfε , used in Theorem 1.1, can be chosen Baire 1. 
Moreover, if X is compact and f : X → R is a bounded Baire 1, then (see [2]) δfε can be chosen upper semi-
continuous and its oscillation index β(δ) is finite. A related result for unbounded functions and X = [0, 1]
was obtained in [16, Thm. 4]. It can be observed that the argument from [16] works for any Polish space. 
We give a slightly modified proof for the reader’s convenience.

Let us recall the notion of oscillation rank (cf. [12], [17], [6]). Denote by CL the family of all closed subsets 
of a fixed Polish space X. Given f : X → R, F ∈ CL and x ∈ F , denote by osc(f, x, F ) the oscillation of 
f |F at a point x (defined as infV (diam f [V ∩ F ]) where infimum is taken over all open neighbourhoods V
of x). For a fixed ε > 0, denote
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D(f, ε, F ) := {x ∈ F : osc(f, x, F ) ≥ ε} ∈ CL .

Then D(·) := D(f, ε, ·) is a derivation on CL (see [6]). Put F 0
f,ε := X, Fα+1

f,ε := D(Fα
f,ε) for α < ω1

and Fα
f,ε :=

⋂
ξ<α F ξ

f,ε if α < ω1 is a limit ordinal. The rank β(f, ε) is defined as the smallest ordinal 
α such that Fα

f,ε(X) = ∅ if such an α exists, and ω1, otherwise. The oscillation rank of f is defined by 
β(f) := supε>0 β(f, ε). It is known that, for a Baire 1 function f , we have β(f) < ω1 (see [12] and [6]).

Theorem 2.1 (essentially Lindner & Lindner). Given a Polish space (X, d) and a function f : X → R with 
β(f) = α < ω1, for every ε > 0 there exists an upper semi-continuous gauge δε : X → R+ such that 
β(δε) ≤ α and for all x, x′ ∈ X, the condition d(x, x′) < min{δε(x), δε(x′)} implies |f(x) − f(x′)| ≤ ε.

Proof. Let ε > 0. Consider a decreasing transfinite sequence (F ξ
f,ε)ξ<α of closed sets defined as in the 

definition of β(f, ε). Note that X =
⋃

ξ<α(F ξ
f,ε \ F

ξ+1
f,ε ).

We will define a function δε : X → R+ on each set F ξ
f,ε \ F ξ+1

f,ε . Fix ξ < α and t ∈ F ξ
f,ε \ F ξ+1

f,ε . Then 

osc(f, t, F ξ
f,ε) < ε. So, pick an open neighbourhood Vt of t with diam f [Vt ∩ F ξ

f,ε] < ε. Define

δt(x) := 1
2 min {1, d(x,X \ Vt)} whenever x ∈ F ξ

f,ε \ F
ξ+1
f,ε .

Then δt is a (1/2)-Lipschitz function on F ξ
f,ε \ F

ξ+1
f,ε . Now, let

δε(x) := sup{δt(x) : t ∈ F ξ
f,ε \ F

ξ+1
f,ε } whenever x ∈ F ξ

f,ε \ F
ξ+1
f,ε .

This defines a positive function on X.
Note that δε restricted to any set F ξ

f,ε\F
ξ+1
f,ε is continuous as an upper bound of equi-continuous functions 

on F ξ
f,ε \ F

ξ+1
f,ε . Also, δε restricted to F ξ

f,ε is continuous at every point of F ξ
f,ε \ F

ξ+1
f,ε since this last set is 

open in F ξ
f,ε.

We claim that β(δε) ≤ α. To prove it, fix η > 0 and consider the respective decreasing transfinite sequence 
(F ξ

δε,η
)ξ<ω1 of closed sets corresponding to the definition of β(δε, η). By transfinite induction we show that 

F ξ
δε,η

⊆ F ξ
f,ε for all ξ < ω1. For ξ = 0 it is obvious. Suppose the inclusion holds for an ordinal ξ < ω1. 

Since δε|F ξ
f,ε

is continuous on F ξ
f,ε \ F

ξ+1
f,ε , we have F ξ+1

δε,η
⊆ F ξ+1

f,ε . In the case when ξ is a limit ordinal, the 

inclusion also holds. This yields

β(δε, η) ≤ β(f, ε) ≤ β(f) < α.

Hence β(δε) ≤ α, since η > 0 has been taken arbitrarily.
We claim that for any ξ < ω1 and x ∈ F ξ

f,ε \ F
ξ+1
f,ε ,

the ball B(x, δε(x)) is disjoint from F ξ+1
f,ε . (1)

Indeed, fix ξ < ω1 and x ∈ F ξ
f,ε \ F ξ+1

f,ε . By the definition of δε pick t ∈ F ξ
f,ε \ F ξ+1

f,ε with δt(x) > 3
4δε(x). 

Recall that diam f [Vt ∩ F ξ
f,ε] < ε and d(x, X \ Vt) ≥ 2δt(x) > 3

2δε(x). Therefore B(x, δε(x)) ⊆ Vt and 

Vt ∩ F ξ+1
f,ε = ∅ which gives (1).

We will show that δε is an ε-gauge for f . Let x, x′ ∈ X and d(x, x′) < min{δ(x), δ(x′)}. Assume that 
x ∈ F γ

f,ε \ F
γ+1
f,ε and x′ ∈ F ξ

f,ε \ F
ξ+1
f,ε where γ ≤ ξ < α. We will consider two cases:

(i) γ < ξ;
(ii) γ = ξ.
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In the first case, by (1) we have B(x′, δε(x′)) ∩ F γ+1
f,ε = ∅. Hence x′ /∈ F γ+1

f,ε which gives a contradiction 

with x′ ∈ F ξ
f,ε ⊆ F γ+1

f,ε .
Thus γ = ξ (the second case). Pick t ∈ F ξ

f,ε \ F
ξ+1
f,ε such that δt(x) > 3

4δε(x). So,

d(x,X \ Vt) ≥ 2δt(x) > 3
2δε(x) > d(x, x′).

Hence x, x′ ∈ Vt. By the choice of Vt we have |f(x) − f(x′)| < ε, as desired.
Finally, we prove that δε is upper semi-continuous. Let x ∈ X and take any sequence (xn) in X convergent 

to x with limn δε(xn) = g. We want to prove that g ≤ δε(x). Pick ξ < α such that x ∈ F ξ
f,ε\F

ξ+1
f,ε . Since F ξ+1

f,ε

is a closed set and x /∈ F ξ+1
f,ε , we can suppose that xn /∈ F ξ+1

f,ε for all n. Firstly, assume that all but finitely 

many xn’s belong to F ξ
f,ε\F

ξ+1
f,ε . Then g = limn δε(xn) = δε(x), since δε restricted to F ξ

f,ε\F
ξ+1
f,ε is continuous. 

Secondly, assume that infinitely many xn’s are in X \ F ξ
f,ε. Let all of them be in X \ F ξ

f,ε. Then by (1) we 
have x /∈ B(xn, δε(xn)) and so, d(xn, x) ≥ δε(xn) > 0 for all n. Hence g = limn δε(xn) = 0 < δε(x). �
Remark. The authors of [16] observed also that the ε-gauge δε defined in the above proof is B∗

1 . The same 
argument works here, but since we do not want to recall the definition of the class B∗

1 , we decided to exclude 
it from the proof of Theorem 2.1.

We will deduce that the statement defining an equi-Baire 1 family remains valid provided that X and Y
are Polish spaces, with a gauge δε being upper semi-continuous.

Theorem 2.2. Suppose that (X, dX) and (Y, dY ) are Polish spaces. Let F be an equi-Baire 1 family of 
functions from X to Y . Then for every ε > 0, the respective ε-gauge δε : X → R+ can be chosen upper 
semi-continuous.

Proof. Fix ε > 0. By Theorem 1.3 there exists a closed cover (Xi)i∈N of X such that diam f [Xi] ≤ ε for all 
i ∈ N and f ∈ F . Consider a Baire 1 function g : X → R given by

g(x) := min{i ∈ N : x ∈ Xi}.

Using Theorem 2.1 pick an upper semi-continuous (1/2)-gauge δε : X → R+ for g, and fix x, x′ ∈ X with 
dX(x, x′) < min{δε(x), δε(x′)}. Then |g(x) − g(x′)| ≤ 1

2 , and it follows that we can find i ∈ N such that 
x, x′ ∈ Xi. Hence for each f ∈ F we have

dY (f(x), f(x′)) ≤ diam f [Xi] ≤ ε,

as desired. �
Corollary 2.3. Suppose that (X, dX) and (Y, dY ) are Polish spaces, and f : X → Y is Baire 1. For every 
ε > 0 there exists an upper semi-continuous gauge δε : X → R+ such that for all x, x′ ∈ X, the condition 
dX(x, x′) < min{δε(x), δε(x′)} implies dY (f(x), f(x′)) ≤ ε.

The next problem is inspired by the results of [2].

Problem 2.4. Assume that X is a compact metric space and let F be an equi-Baire 1 family of (uniformly) 
bounded functions from X to R. Does, for every ε > 0, there exist an ε-gauge δε as in Definition 1.2 which 
is upper semi-continuous and of finite oscillation index β(δε)? Recall that there exists a bounded upper 
semi-continuous function δ : [0, 1] → R+ with β(δ) = ω; see [12, Proposition 2].
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Theorem 2.2 suggests also the following question.

Question 2.5. What will happen if one requires that the ε-gauge is lower semi-continuous in the statement 
of Definition 1.2?

An answer follows from [3, Theorem 11] (see also [16, Theorem 1]) where it is proved that every function 
f described as in the statement of Theorem 1.1, with a lower semi-continuous ε-gauge, must be continuous. 
So, this restricted version of Definition 1.2 deals only with families of continuous functions. By [1, Example 
3.8], an equi-Baire 1 family of continuous functions need not be equi-continuous (our Example 4.2 is slightly 
stronger, since the limit function is continuous). However, when we use lower semi-continuous gauges and 
the domain X is compact, the situation is different.

Proposition 2.6. Assume that (X, dX), (Y, dY ) are metric spaces and X is compact. If F ⊆ Y X is an 
equi-Baire 1 family with the respective ε-gauge δε being lower semi-continuous, then F is equi-continuous.

Proof. Fix ε > 0 and consider the respective lower semi-continuous gauge δε for F . Then δε attains its 
minimum in the compact space X. Let r := min{δε(t) : t ∈ X}. Let x, y ∈ X and dX(x, y) < r. Hence 
dX(x, y) < r ≤ min{δε(x), δε(y)}. Since F is equi-Baire 1, we have dY (f(x), f(y)) < ε for all f ∈ F . This 
shows that F is an equi-continuous family. �
3. Special families of equi-Baire 1 functions

Several examples of equi-Baire 1 families and their properties are given in [1]. One of results is the 
following (the author assumes that a space X is compact but his proof works in a general case).

Theorem 3.1. [1] Let (fn) be a sequence of real-valued Baire 1 functions defined on a metric space X. If 
(fn) is uniformly convergent to f : X → R, then the family {fn : n ∈ N} is equi-Baire 1.

3.1. Convergent sequences

Theorem 3.1 suggests that equi-Baire 1 families can play a similar role to that played by equi-continuous 
families in the Arzelà-Ascoli theorem. The classical version of this theorem states that any uniformly 
bounded and equi-continuous sequence of real-valued functions on a compact metric space contains a uni-
formly convergent subsequence. We will show (see Example 4.2 in the next subsection) that a straightforward 
counterpart of this result for Baire 1 functions is false.

Remark. It is interesting that, given an equi-Baire 1 family F of functions between metric spaces X and Y , 
its closure in the topology of pointwise convergence is also an equi-Baire 1 family; see [14, Proposition 35]. 
In particular, a pointwise limit of a sequence of functions from F is Baire 1.

Question 3.2. Let (fn) be a sequence of (continuous, Baire 1) functions which is pointwise convergent to a 
Baire 1 function f . Is the family {fn : n ∈ N} equi-Baire 1?

We prove below that the answer is positive for a sequence of continuous functions. In the case of Baire 1 
functions, the answer is negative which is shown in Example 4.1.

Theorem 3.3. Let F = {fn : n ∈ N} be a family of continuous functions between Polish spaces (X, dX) and 
(Y, dY ) such that the sequence (fn) is pointwise convergent on X. Then F is an equi-Baire 1 family.
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Proof. Fix ε > 0. Since Y is metrizable and separable, there exists a countable cover (Bi)i∈N of Y by open 
balls with diameters less than ε. For every i ∈ N we can write Bi = ϕ−1

i [(0, ε]] where ϕi(y) := dY (y, Y \Bi)
is a continuous function. Put Bn,i = ϕ−1

i [[ 1
n , ε]] (we assume [ 1

n , ε] := ∅ for 1
n > ε). Then (Bn,i)n∈N is a 

sequence of closed subsets in Y such that Bn,i ⊆ intBn+1,i for all n, i ∈ N. Moreover,

Bi =
∞⋃

n=1
Bn,i =

∞⋃
n=1

intBn,i.

We will prove that

X =
∞⋃
i=1

∞⋃
n=1

∞⋂
k=n

f−1
k [Bn,i].

Assume that f : X → Y is the pointwise limit of the sequence (fn). Fix x ∈ X. Then f(x) ∈ Bi for some 
i ∈ N. There exists n1 such that f(x) ∈ intBn1,i. Since limk→∞ fk(x) = f(x), there exists n2 ≥ n1 such 
that fk(x) ∈ intBn1,i for all k ≥ n2. Then for all k ≥ n2 we have fk(x) ∈ Bn1,i ⊆ Bn2,i, since the sequence 
(Bn,i)n∈N increases.

Since every fk is continuous, the set Fn,i =
⋂∞

k=n f−1
k [Bn,i] is closed in X. For all n, i ∈ N and x, y ∈ Fn,i

we have that fk(x) ∈ Bn,i and fk(y) ∈ Bn,i, therefore, diam fk[Fn,i] ≤ ε for all n ≥ k. In other words, 
for each 〈n, i〉 ∈ N2 there is a finite set F ′ := {fk : k < n} such that diam g[Fn,i] ≤ ε for all g ∈ F \ F ′. 
Enumerate {Fn,i : i, n ∈ N} to a sequence (Aj)j∈N . Then we obtain a countable cover of a space X by 
closed sets Aj such that for every j ∈ N there exists a finite set Fj of functions from F with diam g[Aj ] ≤ ε

for all g ∈ F \ Fj .
Fix j ∈ N. Since a finite family Fj of continuous functions is equi-Baire 1, there exists a cover (Cj,m)m∈N

of the set Aj such that each Cj,m is closed in Aj (and, consequently, in X) and diam g[Cj,m] ≤ ε for all g ∈ Fj . 
Finally, it remains to enumerate {Cj,m : j, m ∈ N} to a sequence (Xi)i∈N and apply Theorem 1.3. �
Corollary 3.4. Let (fn) be a pointwise convergent sequence of functions with the Baire property where 
fn : X → Y and X, Y are Polish spaces. Then there is a Gδ comeager set E ⊆ X such that {fn|E : n ∈ N}
is an equi-Baire 1 family.

Proof. It is well-known that f has the Baire property if and only if f |E is continuous for some comeager set 
E ⊆ X (see [22, Prop. 3.5.8], [19, Theorem 8.1]). For each n, pick a comeager set En ⊆ X such that fn|En

is continuous. We may assume that En is of type Gδ. Let E :=
⋂

n En. Then E is a Polish space. The rest 
follows from Theorem 3.3. �
3.2. Separately equi-Baire 1 functions

Suppose we have a family F of functions of two variables. If the family F is equi-Baire 1, then the family 
of x-sections of functions from F is again equi-Baire 1 (it follows from Theorem 1.3 (ii), or (iii), or (iv)). 
We consider a question about the opposite implication.

Let us fix some terminology. Given metric spaces (X, dX), (Y, dy), a family F ⊂ Y X is called equi-
continuous if, for any x ∈ X and ε > 0, there exists a number δε(x) > 0 such that, for all f ∈ F and x′ ∈ X, 
the condition dX(x, x′) < δε(x) implies dY (f(x), f(x′)) < ε. If, in this condition, one can find a number 
δε > 0 which is good for all x ∈ X, the family F is called uniformly equi-continuous. The equi-continuity of 
F at a point x ∈ X is meant in a natural manner.

Let X, Y, Z be metric spaces. For F : X × Y → Z and each x ∈ X we denote by F 〈x,·〉 : Y → Z the 
function defined by the formula F 〈x,·〉(y) = F (x, y). Analogously, by F 〈·,y〉 : X → Z we denote the function 
F 〈·,y〉(x) = F (x, y).
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Question 3.5. Suppose that the family of x-sections of functions from F is equi-continuous (equi-Baire 1) 
and the family of y-sections of functions from F is equi-continuous. Is it true that F is equi-Baire 1? If not, 
what more should we assume?

The first variant of this question has a simple positive answer under additional assumptions.

Fact 3.6. Suppose that F ⊂ ZX×Y , and the following conditions hold:

• for each x ∈ X the family {F 〈x,·〉 : F ∈ F} is uniformly equi-continuous,
• for each y ∈ Y the family {F 〈·,y〉 : F ∈ F} is uniformly equi-continuous.

Then F is equi-Baire 1.

The proof uses the standard 2ε argument for δε : X × Y → R+ given by the formula δε(x, y) :=
min{δxε , δyε}.

In general we state the first variant of the above question as an open problem.

Problem 3.7. Suppose that F ⊂ RX×Y is a family of separately equi-continuous functions defined on the 
product of Polish spaces X and Y (i.e. {F 〈x,·〉 : F ∈ F} is equi-continuous for each x ∈ X and {F 〈·,y〉 : F ∈
F} is equi-continuous for each y ∈ Y ). Is F equi-Baire 1?

The answer to the second variant of Question 3.5 is “no”, even if all functions from F are separately 
continuous.

Example 3.8. There exists a family F of separately equi-Baire 1 separately continuous functions such that 
F is not equi-Baire 1. Indeed, let Fn : R × R → R be a sequence of separately continuous functions which 
is convergent to F /∈ B1. Such a sequence is constructed e.g. in [23, Example 6]. Since for each x (for each 
y, respectively), F 〈x,·〉

n (F 〈·,y〉
n , resp.) is a sequence of continuous functions convergent pointwise to F 〈x,·〉

(F 〈·,y〉, resp.), it is equi-Baire 1 (by Theorem 3.3). But F is not Baire 1 and thus {Fn : n ∈ N} cannot be 
equi-Baire 1.

We show how to use separately continuous functions to construct (possibly uncountable) equi-Baire 1 
families of functions.

Lemma 3.9. Suppose that X, Z are metric spaces, Y is a compact topological space, and F ⊂ ZX×Y . Fix 
x0 ∈ X. Then the following conditions are equivalent:

(i) F is jointly continuous at 〈x0, y〉 for all y ∈ Y ;
(ii) {F 〈·,y〉 : y ∈ Y } is equi-continuous at x0, and F 〈x0,·〉 is continuous on Y .

Proof. “(i)⇒(ii)”: Fix ε > 0. By the compactness of Y there exists a finite family of open sets U1, U2, . . . , UN

such that

• {x0} × Y ⊂
⋃N

n=1 Un, and
• diamF [Un] < ε for all n ≤ N .

We may assume that all Un’s are of the form B(x0, δn) × Vn, where Vn ⊂ Y is open. Moreover, we can 
assume that all δn’s are equal. Then d(F 〈·,y〉(x), F 〈·,y〉(x0)) < ε for all x ∈ B(x0, δ1) and y ∈ Y where d is 
the metric of Z. Thus {F 〈·,y〉 : y ∈ Y } is equi-continuous at x0.
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“(ii)⇒(i)”: Fix ε > 0. By the continuity of F 〈x0,·〉 and the compactness of Y there exists a finite family 
of open sets V1, V2, . . . , VN such that

• Y ⊂
⋃N

n=1 Vn, and
• diamF 〈x0,·〉[Vn] < ε for all n ≤ N .

Since {F 〈·,y〉 : y ∈ Y } is equi-continuous at x0, there exists δ > 0 such that for all x ∈ B(x0, δ) and y ∈ Y , 
dist(F 〈·,y〉(x), F 〈·,y〉(x0)) < ε. Then, for all y ∈ Y , there exists an open neighbourhood Un := B(x0, δ) ×Vn �
〈x0, y〉 such that diamF [Un] < ε. Thus F is continuous at 〈x0, y〉. �

By the above observation, the well-known result of Namioka [18] for complete metric spaces can be 
“equivalently” formulated as

Theorem 3.10. Suppose that X, Z are metric spaces, where X is complete, and Y is a compact topological 
space. If F : X × Y → Z is separately continuous then the family

{F 〈·,y〉 : y ∈ Y } is equi-Baire 1. (2)

Proof. The assertion of the theorem of Namioka [18] says that

there exists a comeager Gδ set A ⊂ X such that F is jointly continuous on A× Y. (3)

To show (2) we use the characterization from Theorem 1.3(iv). Fix a closed E ⊂ X. By the condition (3)
formulated with X replaced by E, there exists an a ∈ E such that F |E×Y is jointly continuous at each point 
of {a} × Y . By Lemma 3.9, a is a point of equicontinuity of {F 〈·,y〉|E : y ∈ Y }. �

To show the “equivalence” of the above theorem with Namioka’s result we have to show that it is an easy 
consequence of Theorem 3.10. Indeed, using the classical argument one can show that the set

A := {x ∈ X : {F 〈·,y〉 : y ∈ Y } is equicontinuous at x}

is Gδ. Fix an open U ⊂ X. Then use condition (2) for X replaced by U (which is completely metrizable) 
and the characterization from Theorem 1.3 (iv), to show the existence of a point of equicontinuity in U . 
This implies that A is dense.

Remark. For the sequence of functions used in Example 3.8, by (3) there exists a comeager Gδ set A ⊂ X such 
that for each n, Fn is continuous (jointly) on A× Y . Then, by Theorem 3.3, the family {Fn|A×Y : n ∈ N}
is equi-Baire 1 (jointly).

Problem 3.11. Suppose that Fn : X×Y → R is a sequence of separately equi-Baire 1 functions defined on the 
product of Polish spaces X and Y . Does there exist a comeager Gδ set A ⊂ X such that {Fn|A×Y : n ∈ N}
is jointly equi-Baire 1?

3.3. Characteristic functions

Our aim is to check conditions under which a countable family of characteristic functions is equi-Baire 1.

Definition 3.12. (See [13].) A set A in a topological space X is called resolvable, if for every nonempty closed 
set F ⊆ X there exists a relatively open set U ⊆ F such that U ⊆ A or U ⊆ X \A.
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If X is a hereditarily Baire space (i.e. each closed subset of X is a Baire space), then every Fσ- and Gδ-set 
is resolvable. The converse statement is true for any perfectly normal paracompact space X. In particular, 
in complete metric spaces, resolvable sets are exactly Fσ- and Gδ-sets.

Definition 3.13. We say that a family A of subsets of a topological space X is equi-resolvable if for every 
nonempty closed set F ⊆ X there exists a relatively open set U ⊆ F such that U ⊆ A or U ⊆ X \ A for 
every A ∈ A.

Lemma 3.14. If a family A of subsets of a topological space X is equi-resolvable, then 
⋃
A′ is resolvable for 

every subfamily A′ ⊆ A.

Proof. Fix any subfamily A′ ⊆ A and a non-empty closed F ⊂ X. Since A is equi-resolvable, there exists 
a relatively open set U ⊆ F such that U ⊆ A or U ⊆ X \A for every A ∈ A. Consider two cases:

(i) there exists A ∈ A′ with U ⊆ A;
(ii) for all A ∈ A′, U ⊆ X \A.

In case (i) we have U ⊆
⋃

A′. In case (ii) we have U ⊆ X \
⋃
A′. In both cases, 

⋃
A′ is resolvable. �

For A ⊂ X and i ∈ {0, 1}, denote

Ai :=
{

A for i = 0
X \A for i = 1.

It is easy to observe that, if A is equi-resolvable, so is {Ai : A ∈ A and i ∈ {0, 1}}. Moreover, using 
Lemma 3.14 and De Morgan’s laws, we obtain the next lemma.

Lemma 3.15. For an equi-resolvable family A of subsets of a topological space X and any α ∈ {0, 1}A, the 
set

⋂
A∈A

Aα(A)

is resolvable. In particular, if X is Polish, the above set is Fσ.

Theorem 3.16. Given a topological space X, let A be a non-empty family of subsets of X and let F = {χA :
A ∈ A} be the respective family of characteristic functions. Consider the following conditions:

(i) for every ε > 0 there exists a closed cover (Xi)i∈N of X with diam f [Xi] ≤ ε for all f ∈ F ;
(ii) A is equi-resolvable;
(iii) the family B :=

{⋂
A∈A Aα(A) : α ∈ {0, 1}A

}
is countable and contains only Fσ sets.

Then: (i) ⇒ (ii) if X is hereditarily Baire; (ii) ⇒ (iii) if X is perfectly normal paracompact space: (iii) ⇒
(i).

In particular, if X is a Polish space, all these conditions are equivalent.

Proof. We start with two observations about the family B defined in (iii):

• elements of B are pairwise disjoint;
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•
⋃
B = X,

i.e. B forms a partition of X.
“(i)⇒(ii)”: Assume that X is hereditarily Baire. Fix a closed set F ⊆ X and notice that F is a Baire 

space. There exists a closed cover (Xi)i∈N of X such that diam f [Xi] = 0 for all f ∈ F . Since F is Baire, 
there is N such that U = intF (XN ∩ F ) �= ∅. Then diam f [U ] = 0 for every f ∈ F , which implies that 
U ⊆ A or U ⊆ X \A for every A ∈ A.

“(ii)⇒(iii)”: Lemma 3.15 implies that each element of B is resolvable, and so it is an Fσ and Gδ subset 
of X. It is enough to show that B is countable. Assume to the contrary that B is uncountable. Let B be a 
transversal of B, i.e. cardinality of B∩A is equal to 1 for all A ∈ B (it is possible since B is a partition of X). 
Then B is also uncountable. Let C ⊆ X be the closure of B. Since C is uncountable, it contains a non-empty 
perfect set F ⊆ C. Since A is equi-resolvable, there exists an open set U ⊂ X such that U ∩ F �= ∅ and for 
each A ∈ A,

either U ∩ F ⊆ A or U ∩ F ⊆ X \A. (4)

But U ∩ B �= ∅, and so (since F is dense in itself), U ∩ B has at least two elements, say b1, b2. Thus there 
exist α1, α2 ∈ {0, 1}A with

b1 ∈
⋂
A∈A

Aα1(A) �=
⋂
A∈A

Aα2(A) � b2,

and so

U ∩B ∩
⋂
A∈A

Aα1(A) �= ∅ �= U ∩B ∩
⋂
A∈A

Aα2(A).

Moreover, for any A ∈ A with α1(A) �= α2(A),

χA

[
U ∩B ∩

⋂
A∈A

Aα1(A)

]
�= χA

[
U ∩B ∩

⋂
A∈A

Aα2(A)

]
.

This contradicts with (4).
“(iii)⇒(i)”: Fix ε ∈ (0, 1). Since B is countable, B = {Bn : n ∈ N}. Each of these sets is Fσ in X. 

Therefore, for every n ∈ N there exists a sequence of closed sets (Fnm)m∈N such that

Bn =
⋃

m∈N
Fnm.

Enumerate the double sequence (Fnm)n,m∈N into (Xn)n∈N . Since B is a partition of X, we have X =⋃
n∈N Xn. Moreover, diam f [Bn] = 0 for all n ∈ N and f ∈ F , and it follows that diam f [Xn] = 0 for all 

f ’s and n’s. �
Corollary 3.17. Consider a non-empty family A of pairwise disjoint subsets of X. Then the family {χA : A ∈
A} is equi-Baire 1 if and only if

• A is countable, and
• each element of A is Fσ, and
•

⋃
A is Gδ.
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Proof. If elements of A are pairwise disjoint then
{ ⋂

A∈A
Aα(A) : α ∈ {0, 1}A

}
=

{
A ∪ {X \

⋃
A} if A has exactly one element;

A ∪ {∅, X \
⋃

A} if A has at least two elements.

The rest follows from Theorem 3.16 (iii). �
As an immediate consequence of the previous corollary, we obtain the following.

Corollary 3.18. Consider a countable set A = {an : n ∈ N} ⊆ R. Then the family {χ{an} : n ∈ N} is 
equi-Baire 1 if and only if A is Gδ.

4. Applications

We give two examples as an application of Corollary 3.18. Example 4.1 answers the Baire 1 part of 
Question 3.2 in the negative. Example 4.2 shows that the generalization of the Arzelà-Ascoli theorem on 
the class of Baire 1 functions is false.

Example 4.1. Fix a one-to-one enumeration qn, n ∈ N, of all rational numbers and let fn := χ{qn} for n ∈ N. 
Clearly, the sequence (fn) is pointwise convergent to the zero function. It is known that Q is not a Gδ set. 
Hence {fn : n ∈ N} is not an equi-Baire 1 family.

We can also give a direct proof of this fact. Indeed, suppose that there is a (1/2)-gauge δ : R → R+ which 
witnesses that {fn : n ∈ N} is equi-Baire 1. Let Xn := {x ∈ R : δ(x) > 1/n} for n ∈ N. Then R =

⋃
n Xn

and, by the Baire category theorem, pick a set Xm whose closure has nonempty interior. So, pick a ball 
B(qn, r) contained in the closure of Xm with r < min{1/m, δ(qn)}. Take a point x in B(qn, r) ∩ (Xm \{qn}). 
Then |x − qn| < r < 1/m < δ(x) and r < δ(qn). Hence |fn(x) − fn(qn)| < 1/2. On the other hand, 
|fn(x) − fn(qn)| = 1. Contradiction.

Example 4.2. Let X := [0, 1]. The set A := {0} ∪ {1/n : n ≥ 2} ⊆ X is closed, hence Gδ. By Corollary 3.18, 
the family F of characteristic functions of singletons contained in A is equi-Baire 1. Clearly, the functions 
in F are uniformly bounded. Let f1 := χ{0} and fn := χ{1/n} for n ≥ 2. Consider a subsequence (fkn

) of 
(fn). Then for any N ∈ N there are m, n ≥ N such that

sup
x∈[0,1]

|fkn
(x) − fkm

(x)| = 1.

Hence (fkn
) cannot be uniformly convergent. We can modify this example to make the functions fn contin-

uous. Indeed, for n ≥ 2 and x ∈ [0, 1], let

fn(x) := n(n + 1)dist
(
x,

[
0, 1

n
− 1

n + 1

]
∪
[

1
n

+ 1
n + 1 , 1

])
.

These functions are continuous and bounded by 1. The family {fn : n ≥ 2} is equi-Baire 1 since (fn)
converges pointwise to the zero function, so we can use Theorem 3.3. As above, we argue that there is no 
uniformly convergent subsequence of (fn).

Comparing Theorem 3.1 with Example 4.2, one can raise the following question.

Question 4.3. Given a uniformly bounded sequence (fn) of real-valued Baire 1 functions defined on a Polish 
space X, assume that the family {fn : n ∈ N} is equi-Baire 1. What more should be assumed to guarantee 
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that (fn) contains a subsequence which is uniformly convergent on X? We can also ask whether the above 
sequence (fn) contains a subsequence that is uniformly convergent on a large set in the Baire category sense.

As to the second part of this question, if we consider its measure counterpart, the answer is positive 
provided that a finite Borel measure μ is given on X. Indeed, it suffices to apply the Egorov theorem (see 
[19, Theorem 8.3]). Then the whole sequence is uniformly convergent on a set of measure sufficiently close 
to μ(X). It is known (see [19]) that the Baire category analogue of the Egorov theorem is false. This also 
gives the negative answer to our question.

Example 4.4. We will adapt the example from [19, Section 8]. Define the sequence (ϕn)n≥0 of tent-like 
continuous functions ϕn : R → R, n ≥ 0, as follows. Firstly, let

ϕ0(x) := 2x for x ∈ [0, 1/2] and ϕ0(x) := 2 − 2x for x ∈ [1/2, 1].

Secondly, let n ≥ 1 and put ϕn(x) := ϕ0(2nx) for x ∈ [0, 1/2n]. Finally, let ϕn(x) := 0 for all n ≥ 0, 
whenever x < 0 or x > 1/2n. Enumerate all rationals in a one-to-one sequence (qi). For n ≥ 0, let

fn(x) :=
∞∑
i=1

2−iϕn(x− qi) if x ∈ R.

Then every function fn is continuous since the above series is uniformly convergent on R. Additionally, 
fn → 0 pointwise on R. If an interval (a, b) is fixed, there is no subsequence (fkn

) of (fn) that can be 
uniformly convergent on (a, b) since, if qi ∈ (a, b), we have supx∈(a,b) fkn

(x) ≥ 1/2i for sufficiently large n. 
Moreover, any set on which (fkn

) is uniformly convergent, must be nowhere dense (see [19]). Observe that 
{fn : n ∈ N} is an equi-Baire 1 family by Theorem 3.3.

Inspired by a version of the Arzelà-Ascoli theorem for pointwise convergence [21, Theorem 2.3.14], we 
can, thanks to Theorem 1.3, prove the analogous version for Baire 1 functions.

Proposition 4.5. Let X be a separable metric space and let (fn) be a pointwise bounded sequence of functions 
fn : X → R, n ∈ N, that form an equi-Baire 1 family. Then there exists a subsequence (fkn

) which is 
pointwise convergent on X to a Baire 1 function.

Proof. By Theorem 1.3 consider a finer separable topology on X which makes F equi-continuous. From now 
on, we will use this topology on X and assume that it is metrizable by a metric d. To end the proof, it suffices 
to apply the above mentioned version of the Arzelà-Ascoli theorem dealing with pointwise convergence. We 
recall briefly its proof for the reader’s convenience.

Fix a countable dense set {qr : r ∈ N} ⊆ X. Since (fn) is pointwise bounded, we can, by the Bolzano-
Weierstrass theorem and the standard diagonal trick, choose a subsequence (fkn

) that is convergent at every 
point qr.

Let ε > 0 and x ∈ X. Since the family {fn : n ∈ N} is equi-continuous, consider δx > 0 such that 
|fn(x′) − fn(x)| < ε/3 for all n ∈ N whenever x′ ∈ X and d(x′, x) < δx. Choose qr ∈ B(x, δx). Since 
(fkn

(qr))n∈N is convergent, it is a Cauchy sequence, so pick N ∈ N such that |fkm
(qr) − fkp

(qr)| < ε/3 for 
all m, p ≥ N . Then for all m, p ≥ N we have

|fkm
(x) − fkp

(x)| ≤ |fkm
(x) − fkm

(qr)| + |fkm
(qr) − fkp

(qr)| + |fkp
(qr) − fkp

(x)| < ε.

Hence (fkn
(x)) is a Cauchy sequence which implies its convergence.

Finally, note that the pointwise limit of the sequence (fkn
) of equi-Baire 1 functions is Baire 1 by [14, 

Proposition 36]. �
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The above proposition can be derived from the deep result by Bourgain, Fremlin and Talagrand [4]. 
Indeed, if the family F := {fn : n ∈ N} is equi-Baire 1, then its closure in the pointwise topology is also 
equi-Baire 1 by [14, Proposition 36], hence it is contained in the class of Baire 1 functions. If F is pointwise 
bounded, this closure is compact in the topology of pointwise convergence. But such a compact set, if it is 
a subset of Baire 1 functions, is also sequentially compact by the result of [4].
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