

Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications pp 143-158 | Cite as

Ising-Like Model of Nanosize Spin-Crossover Molecular Crystals

Authors Authors and affiliations

Iurii Gudyma 🖂 , Artur Maksymov

Conference paper

First Online: 26 November 2020

Part of the Springer Proceedings in Physics book series (SPPHY, volume 246)

Abstract

The properties of spin-crossover nanoparticles were investigated within a framework of Isinglike model. By involving the Monte Carlo simulation tools, a thermal transition of spincrossover solids with local random fields of various statistical characteristics and without
stochastic origins has been analyzed. In three-dimensional spin-crossover crystal, the presence
of fluctuations may provoke the hysteresis for the system with gradual non-hysteretic transition
in contrary to the one that undergoes the first-order phase transition, in which the fluctuations
play destructive role on system cooperativity vanishing the hysteresis loop. The changes of
transition temperatures characterizing the systems bistable properties for 3D lattices with
ferromagnetic and antiferromagnetic couplings of surface's molecules and their dependence on
its size and fluctuation strength were obtained. Also, the regions with hysteretic and nonhysteretic behavior have been found.