
equations by the sequence of systems of ordinary differential equations have been studied in the works of I.M.
Cherevko and S.A. Ilika [8,9].

The study of the relations between the differential-difference equations and the corresponding approximating
systems of ordinary differential equations allowed us to propose algorithms for solving a number of applied prob-
lems. Schemes for approximating the nonsymptotic roots of quasi-polynomials of linear differential-difference
equations are proposed in [5, 7], and a method for investigating the stability of solutions of such equations is
given in [8, 10]. Constructive algorithms for constructing regions of stability of linear systems with many delays
were obtained in [11].

Using the approximate finding algorithms for non-asymptotic roots of quasi-polynomials, a way for construct-
ing the coefficient areas of stability for linear differential equations with delay and finding the set of delay values
for which the equation is asymptotically stable is suggested. Performed numerical experiments for model test ex-
amples confirm the effectiveness of proposed schemes for modeling the linear differential equations with delay.
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Let D be a Banach algebra. We denote by ℓ1(D) the vector space of sequences u = (x1, . . . , xn, . . .), xi ∈ D and
‖u‖ = ∑

∞
i=1 ‖xi‖. Also we will denote by Λ1(D) = ℓ1(D)× ℓ1(D) and each element u ∈ Λ1(D) we represent as

u = (y|x) = (. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .),
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