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Abstract. Given a Riesz space E and 0 < e ∈ E, we introduce and study an
order continuous orthogonally additive operator which is an ε-approximation
of the principal lateral band projection Qe (the order discontinuous lattice
homomorphism Qe : E → E which assigns to any element x ∈ E the maximal
common fragment Qe(x) of e and x). This gives a tool for constructing an
order continuous orthogonally additive operator with given properties. Using
it, we provide the first example of an order discontinuous orthogonally additive
operator which is both uniformly-to-order continuous and horizontally-to-order
continuous. Another result gives sufficient conditions on Riesz spaces E and
F under which such an example does not exist. Our next main result asserts
that, if E has the principal projection property and F is a Dedekind complete
Riesz space then every order continuous regular orthogonally additive operator
T : E → F has order continuous modulus |T |. Finally, we provide an example
showing that the latter theorem is not true for E = C[0, 1] and some Dedekind
complete F . The above results answer two problems posed in a recent paper
by O. Fotiy, I. Krasikova, M. Pliev and the second named author.

1. Introduction

We use standard terminology and notation on Riesz spaces as in [3]. In the
next section, we provide with all necessary information on the lateral order and
orthogonally additive operators (OAOs, in short) on Riesz spaces. In the present
section, we describe our main results.

Basic order continuity properties of OAOs essentially differ from that of lin-
ear operators. Let E, F be Riesz spaces. Below we provide assertions for linear
operators which and false for OAOs.

(1) If E has the principal projection property and F is Dedekind complete then
every horizontally-to-order continuous linear operator T : E → F is order
continuous [14, Proposition 3.9]. For OAOs this is false: if 0 ≤ p ≤ ∞
then there exists a horizontally-to-order continuous orthogonally additive
functional f : Lp → R which is not order continuous (moreover, f is not
uniformly-to-order continuous), see [5, Example 2.1].

(2) If F is Archimedean then every regular linear operator T : E → F is
uniformly-to-order continuous [27, Proposition 4.6]. A typical example of a
positive OAO which is not uniformly-to-order continuous is the principal
lateral band projection Qe (see the next section), see also (1).

(3) If F is Dedekind complete then an order bounded linear operator T : E → F
is order continuous if and only if |T | is. This is not true for OAOs: there is
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an order bounded orthogonally additive functional f : R→ R such that |f |
is order continuous and f is not [5, Example 3.1].

Remark that the implication

(∗) T is order continuous ⇒ |T | is order continuous

for OAOs is much more involved for investigation. It was one of the main questions
considered in [5]. Some partial results were obtained there.

Proposition 1.1. [5, Proposition 3.2]. Let E be a finite dimensional Archimedean
Riesz space, F a Dedekind complete Riesz space and T : E → F an order continuous
OAO. Then |T | is order continuous.

Theorem 1.2. [5, Theorem3.8]. Let E be a Riesz space with the principal projec-
tion property, Ω a nonempty set and T : E → RΩ an order continuous OAO. Then
the operator |T | is order continuous as well.

Theorem 1.3. [5, Corollary 3.5]. Let E be a Riesz space with the principal pro-
jection property and F a Dedekind complete Riesz space. Then for every order
continuous operator T ∈ OAr(E,F ) the following assertions are equivalent:

(1) |T | is order continuous;
(2) T+ is order continuous;
(3) for every net (xα) in E order convergent to some element x ∈ E, the

following condition holds
(
T+(xα)− T+(x)

)+ o−→ 0.

So the following natural questions remained unsolved.

Problem 1. [5]. Under what assumptions on Riesz spaces E, F with F Dedekind
complete every order bounded OAO T : E → F which is both horizontally-to-order
continuous and uniformly-to-order continuous, is order continuous?

Problem 2. [5]. Do there exist a Riesz space with the principal projection property
E, a Dedekind complete Riesz space F and an order continuous OAO T : E → F
such that |T | is not order continuous?

The principal lateral band projection Qe can serve as an “atomic” OAO in
different constructions (as one of the summands) of an OAO with given properties.
This technique was actively explored in [27] to prove the existence of OAOs with
some pathological properties. However, Qe is order discontinuous, which makes
impossible construction of an order continuous OAO with given properties.

The first part of the present paper is devoted to construction of some order
continuous operator Qε

e, which approximates Qe as ε → 0+.

2. Preliminary information

Let E be a Riesz space and x, y ∈ E. We say that x is a fragment of y (write
x v y) provided x ⊥ y−x. The set of all fragments of an element e ∈ E is denoted
by Fe. A disjoint sum in E is written using symbols

⊔
,t. So y =

⊔m
k=1 xk means

that y =
∑m

k=1 xk and xi ⊥ xj as i 6= j. For instance, if x v y then y = xt (y−x),
and if z = x t y then x, y ∈ Fz.
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2.1. The lateral order. The relation v is a partial order on E, called the lateral
order (see [16] for a systematic study of the lateral order). The supremum and
infimum of a subset A ⊆ E with respect to the lateral order (if exists) is denoted
by

⋃⋃⋃
A and

⋂⋂⋂
A respectively (for a two-point set A = {x, y} write x∪∪∪ y and x∩∩∩ y).

A subset A ⊆ E is said to be laterally bounded if A ⊆ Fe for some e ∈ E. Although
any subset is laterally bounded from below by zero, a two-point set {x, y} ⊂ E
may not have a lateral infimum x∩∩∩ y (which is the maximal common fragment of
x and y), see [16, Example 3.11]. A Riesz space E is said to have the intersection
property provided every two-point subset of E has a lateral infimum. The principal
projection property implies the intersection property [16, Theorem 3.13], however
the converse is not true (C[0, 1] is a counterexample). A subset G ⊆ E is called a
lateral ideal provided Fx ⊆ G for all x ∈ G, and x t y ∈ G for all x, y ∈ G with
x ⊥ y. A lateral ideal G of E is said to be a lateral band if for every A ⊆ G the
existence of

⋃⋃⋃
A implies

⋃⋃⋃
A ∈ G. Every order ideal is a lateral ideal and every band

is a lateral band. For every e ∈ E \ {0} the set Fe is a lateral band which is not an
order ideal. Moreover, Fe is both the minimal lateral ideal and minimal lateral band
containing e. We say that Fe is the principal lateral ideal and principal lateral band
generated by e. The notion of a lateral ideal (lateral band) is so important for the
study of orthogonally additive operators (order continuous orthogonally additive
operators) as well as the order ideals (respectively, bands) are important for the
study of order bounded (respectively, order continuous) linear operators [16], [17].

Proposition 2.1 ([16], [27]). Let E be a vector lattice and e ∈ E. Then the
following assertions hold.

(1) The set Fe of all fragments of e is a Boolean algebra with zero 0, unit e with
respect to the operations ∪∪∪ and ∩∩∩. Moreover, x∪∪∪ y = (x+∨ y+)− (x−∨ y−)
and x∩∩∩ y = (x+ ∧ y+)− (x− ∧ y−) for all x, y ∈ Fe.

(2) Assume e ≥ 0. Then the following holds.
(a) The lateral order v on Fe coincides with the lattice order ≤.
(b) Let a nonempty subset A of Fe have a lateral supremum a =

⋃⋃⋃
A

(respectively, a lateral infimum a =
⋂⋂⋂

A).
(i) If y = sup A (respectively, y = inf A) exists in E then y = a.
(ii) If, moreover, E has the principal projection property then supA

(respectively, inf A) exists in E and by (i) equals a.

Remark that there exist a vector lattice E, an element e ∈ E+ and subsets A
and B of Fe such that

⋃⋃⋃
A and

⋂⋂⋂
B exist, while sup A and inf B do not exist in E

[27, Example 1.2].

2.2. Orthogonally additive operators. Let E be a Riesz space and X a real
vector space. A function T : E → X is called an orthogonally additive operator
(OAO in short) provided T (x+y) = T (x)+T (y) for any disjoint elements x, y ∈ E.
Obviously, if T is an OAO then T (0) = 0. The set of all OAOs from E to X is a
real vector space with respect to the natural linear operations.

Let E,F be vector lattices. An OAO T : E → F is said to be:

• positive if T (x) ≥ 0 for all x ∈ E;
• regular if T is a difference of two positive operators;
• order bounded, or an abstract Uryson operator, if it maps order bounded

subsets of E to order bounded subsets of F ;



4 V. MYKHAYLYUK AND M. POPOV

• laterally-to-order bounded if the set T (Fx) is order bounded in F for every
x ∈ E;

• disjointness preserving if Tx ⊥ Ty for every disjoint x, y ∈ E;
• laterally non-expanding if T (x) v x for all x ∈ E.

The positivity of OAOs is completely different from that of linear operators, and
the only linear operator which is positive in the sense of OAOs is zero. A positive
OAO need not be order bounded. Indeed, every function T : R→ R with T (0) = 0
is an OAO, and, obviously, not all such functions are order bounded. Obviously,
every laterally non-expanding OAO preserves disjointness. The kernel of a positive
OAO is a lateral ideal [16, Proposition 6.4] and every lateral ideal is a kernel of
some positive OAO [17, Theorem 3.1].

Denote the sets of all positive, regular, order bounded and laterally-to-order
bounded OAOs from E to F by OA+(E, F ), OAr(E, F ), U(E, F ) and P(E, F )
respectively. Observe that U(E,F ) is a vector subspace of P(E, F ) and the inclusion
U(E, F ) ⊂ P(E,F ) is strict even for the one-dimensional case E = F = R ([26]).
We endow OAr(E,F ) with the order S ≤ T provided that T −S is a positive OAO,
that is, Sx ≤ Tx for all x ∈ E. Then OAr(E, F ) becomes an ordered vector space.

The following theorem by Pliev and Ramdane generalizes a result by Mazón and
Segura de León [14, Theorem 3.2.]

Theorem 2.2. [26, Theorem 3.6]. Let E,F be Riesz spaces with F Dedekind
complete. Then OAr(E,F ) = P(E,F ) and OAr(E, F ) is a Dedekind complete
Riesz space. Moreover, for all S, T ∈ OAr(E, F ), x ∈ E the following relations
hold:

(1) (T ∨ S)x = sup{Ty + Sz : x = y t z, y, z ∈ E};
(2) (T ∧ S)x = inf{Ty + Sz : x = y t z, y, z ∈ E};
(3) T+x = sup{Ty : y v x};
(4) T−x = − inf{Ty : y v x};
(5) |Tx| ≤ |T |x.

Under the same assumptions on E and F , the set U(E, F ) of all abstract Uryson
operators is itself a Dedekind complete Riesz space possessing the same properties
(1)-(5) [14, Theorem 3.2.]. Moreover, U(E,F ) is an order ideal of OAr(E, F ) [26,
Proposition 3.7], but not necessarily a band [26, Example 3.8].

2.3. The principal lateral band projection Qe. A laterally non-expanding
projection (that is, T 2 = T ) is called a lateral retraction. A subset A of E is
called a lateral retract if A is the image of some lateral retraction T : E → E,
that is, T (E) = A. A lateral band A of E, which is a lateral retract, is called a
projection lateral band, and the lateral retraction of E onto A is called the lateral
band projection of E onto A.

Theorem 2.3. [27, Theorem 1.6]. Let E be a vector lattice with the intersection
property. Then for every e ∈ E \ {0} the function Qe : E → E defined by setting

Qe(x) = x∩∩∩ e for all x ∈ E

is the lateral band projection of E onto Fe.

In Theorem 3.2 we give explicit formula (3.4) for x∩∩∩ e in terms of lattice opera-
tions over x and e if x− e is a projective element of E.
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2.4. The intersection property is a lateral analogue of the principal pro-
jection property. Recall that y ∈ E is called a projection element of E provided
E = Ey ⊕ Edd

y , where by Ey we denote the minimal order ideal containing y. In
this case the order projection Py of E onto Ey is given (see [3, Theorem 1.47]) by

(2.1) Py x =
∞∨

n=1

(x ∧ n|y|), x ∈ E+.

We need the following property of Py. By (3) of [3, Theorem 1.44],

(2.2) (∀u, v ∈ E) Py u ⊥ (v − Py v).

A Riesz space E is said to have the principal projection property provided every
element of E is a projection element.

Let E be a vector lattice and x, y ∈ E. We say that x is laterally disjoint to y
and write x†y if Fx ∩ Fy = {0}. Two subsets A and B of E are said to be laterally
disjoint (write A†B) if x†y for every x ∈ A and y ∈ B. The laterally disjoint
complement to a subset A of E is defined as follows: A† := {x ∈ E : (∀a ∈ A)x†a}.
Note that x ⊥ y implies x†y for all x, y ∈ E and the converse is false. However, x†y
implies x ⊥ y for every laterally bounded pair x, y ∈ E. An element e of a vector
lattice E is called a laterally projection element provided E is decomposed into a
nonlinear direct sum E = Fe tF†e, that is, every x ∈ E has a unique representation

(2.3) x = y t z, where y ∈ Fe and z ∈ F†e.

Proposition 2.4. [25, Proposition 4.9]. A vector lattice E has the intersection
property if and only if every element of E is laterally projective. Moreover, repre-
sentation (2.3) of any x ∈ E is given by x = Qex t (x − Qex), where Qe is the
principal lateral band projection.

2.5. Different types of order convergence and order continuity. A net
(xα)α∈A in a Riesz space E converges to a limit x ∈ E:

• strongly order if there is a net (uα)α∈A in E such that uα ↓ 0 and |xα−x| ≤
uα for some α0 ∈ A and all α ≥ α0 (write xα

s.o−→ x);
• weakly order if there is a net (vβ)β∈B in E such that vβ ↓ 0 and for every

β ∈ B there exists α0 ∈ A such that |xα − x| ≤ vβ for all α ≥ α0 (write
xα

w.o−→ x);
• horizontally1 if xα v xβ for all α < β and

⋃⋃⋃
α∈Axα = x (write xα

h−→ x);
• e-uniformly, where e ∈ E+ if

∀n ∈ N ∃α0 ∈ A ∀α ≥ α0 |xα − x| ≤ 1
n

e;

in this case we write xα

e

⇒ x;
• uniformly, provided (xα)α∈A converges to x e-uniformly for some e ∈ E+;

in this case we write xα ⇒ x.
Every strongly order convergent net weakly converges to the same limit, but

the converse is false [2]. However, the strong and weak order convergence are
equivalent if either E is Dedekind complete or the net (xα)α∈A is monotone. In
these two cases we write xα

o−→ x. Note that one can equivalently replace the
condition

⋃⋃⋃
α∈Axα = x with xα

o−→ x in the definition of horizontal convergence

1laterally or up-laterally in other terminology
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under the assumption xα v xβ for all α < β. The uniform convergence of a net
implies the strong order convergence the net to the same limit.

The order continuity of operators we understand in the sense of strong order
convergence. More precisely, let E, F be Riesz spaces. An OAO T : E → F is said
to be:

• order continuous provided for any x ∈ E and any net (xα)α∈A in E the
condition xα

s.o−→ x implies T (xα) s.o−→ T (x);
• horizontally-to-order continuous provided for any x ∈ E and any net (xα)α∈A

in E the condition xα
h−→ x implies T (xα) s.o−→ T (x);

• uniformly-to-order continuous provided for any x ∈ E and any net (xα)α∈A

in E the condition xα ⇒ x implies T (xα) s.o−→ T (x).

3. ε-shading operator

The principal lateral band projection Qe (see Theorem 2.3) gives an important
tool for constructing examples of OAOs defined on a Riesz space with the inter-
section property. However, Qe is not order continuous (because Qe

(
(1 − 1

n ) e
)

=
0 6= e = Qe(e) for all n ∈ N, however (1 − 1

n ) e
s.o−→ e). In the present section, we

construct a “blurring” version of Qe, which mainly has similar properties and is
order continuous. Another superiority of this version is that it acts in an arbitrary
Riesz space.

Let E be a Riesz space, 0 < e ∈ E and 0 < ε < 1. Define a map Qε
e : E → E by

setting

(3.1) Qε
e(x) =

1
ε

((
x− (1− ε) e

)+ ∧ (
(1 + ε) e− x

)+
)
, x ∈ E.

The map Qε
e defined by (3.1) will be called the ε-shading operator generated by

e.

Lemma 3.1. Let E be a Riesz space, 0 < e ∈ E and 0 < ε < 1. Then for every
x ∈ E one has

(3.2) Qε
e(x) =

(
e− 1

ε
|x− e|

)+

= e− e ∧ 1
ε
|x− e|.

Proof. Remark that, by the well known formula [3, Theorem 1.7]

(3.3) (∀s, t ∈ E) s = (s− t)+ + s ∧ t,

it is enough to prove one of the equalities. For every x ∈ E, using theorems 1.3
and 1.8 of [3], we obtain

εe− εQε
e(x)

(3.3)
= εe− (

x− x ∧ (1− ε) e
) ∧ (

(1 + ε) e− (1 + ε) e ∧ x
)

= εe +
(
x ∧ (1− ε)e− x

) ∨ (
(1 + ε)e ∧ x− (1 + ε)e

)

=
(
x ∧ (1− ε)e + εe− x

) ∨ (
(1 + ε)e ∧ x− e

)

=
(
εe ∧ (e− x)

) ∨ (
εe ∧ (x− e)

)
= εe ∧ |x− e|.

¤

The following theorem collects main properties of the ε-shading operator.
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Theorem 3.2. Let E be a Riesz space, 0 < e ∈ E and 0 < ε < 1. Then the
map Qε

e defined by (3.1) is a positive disjointness preserving order continuous OAO
possessing the following properties.

(i) (∀x ∈ E) 0 ≤ Qε
e(x) = Qε

e(x
+) ≤ x+ ∧ e.

(ii) (∀x, y ∈ E) |Qε
e(x)−Qε

e(y)| ≤ 2
ε |x− y|.

(iii) (∀t ∈ Fe) Qε
e(t) = t;

(iv) For every x ∈ E such that either x ≤ (1 − ε) e or x ≥ (1 + ε) e one has
Qε

e(x) = Qe(x) = 0.
(v) For every x ∈ E if 0 < ε′ < ε′′ < 1 then Qε′

e (x) ≤ Qε′′
e (x).

(vi) If x−e is a projection element of E then both
∧∞

n=1 Q
1/n
e (x) and x∩∩∩e exist

and

(3.4)
∞∧

n=1

Q1/n
e (x) = e− Px−e e = x∩∩∩ e = x− Px−e x.

(vii) Let e = e′ t e′′. Then Qε
e′(x)tQε

e′′(x) = Qε
e(x) for all x ∈ E. If, moreover,

e′ and e′′ are projection elements of E then Qε
e′ tQε

e′′ = Qε
e.

For the proof, we need the following lemma.

Lemma 3.3. Let E be a Riesz space and u, v ∈ E+. Then the map Q : E → E
defined by setting

Q(x) = (x− u)+ ∧ (v − x)+ for all x ∈ E

is a positive disjointness preserving order continuous OAO possessing the following
properties:

(i) (∀x ∈ E) 0 ≤ Q(x) = Q(x+) ≤ x+;
(ii) (∀x, y ∈ E) |Q(x)−Q(y)| ≤ 2|x− y|.

Proof. First fix any x, y ∈ E+ with x ⊥ y and prove

(3.5) Q(x + y) = Q(x) + Q(y).

Now we show that

(3.6) (v − y) ∧ x = v ∧ x and (v − x) ∧ y = v ∧ y.

Indeed, on the one hand,

|v ∧ x− (v − y) ∧ x| ≤ |v − (v − y)| = y.

On the other hand,

|v ∧ x− (v − y) ∧ x| ≤ |v ∧ x|+ |(v − y) ∧ x| ≤ 2x.

Hence, |v ∧ x− (v − y) ∧ x| ≤ y ∧ (2x) = 0 and the first equality in (3.6) is proved.
The second one is similar. Now (3.6) implies

(3.7) (v − y)+ ∧ x = v ∧ x and (v − x)+ ∧ y = v ∧ y.

Indeed,

(v − y)+ ∧ x =
(
(v − y) ∨ 0

) ∧ x =
(
(v − y) ∧ x

) ∨ 0
(3.6)
= v ∧ x.
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Taking into account that x + y = x ∨ y, we obtain

Q(x + y) = (x ∨ y − u)+ ∧ (v − x ∨ y)+

=
(
(x− u) ∨ (y − u)

)+ ∧ (
(v − x) ∧ (v − y)

)+

=
(
(x− u)+ ∨ (y − u)+

) ∧ (
(v − x)+ ∧ (v − y)+

)

= w1 ∨ w2,

(3.8)

where

w1 = (x− u)+ ∧ (v − x)+ ∧ (v − y)+ and w2 = (y − u)+ ∧ (v − x)+ ∧ (v − y)+.

Observe that w1 ≤ x and w1 ≤ v. Hence

w1 = w1 ∧ x
(3.7)
= (x− u)+ ∧ (v − x)+ ∧ v ∧ x = (x− u)+ ∧ (v − x)+ = Q(x).

Analogously, w2 ≤ y, w2 ≤ v and hence

w2 = w2 ∧ y
(3.7)
= (y − u)+ ∧ v ∧ y ∧ (v − y)+ = (y − u)+ ∧ (v − y)+ = Q(y).

Taking into account that 0 ≤ w1 ≤ x and 0 ≤ w2 ≤ y, we obtain that w1 ⊥ w2

and hence, w1 ∨ w2 = w1 + w2 = Q(x) + Q(y). By (3.8), one gets (3.5).
To prove (3.5) for the general case of x, y ∈ E with x ⊥ y, by the above, it is

enough to prove that

(3.9) Q(x) = Q(x+) for all x ∈ E.

Fix any x ∈ E. We need two claims and the following known elementary fact
(see item (2) of [3, Theorem 1.7]): ∀r, s, t ∈ E

(3.10) |s ∨ r − t ∨ r| ≤ |s− t| and |s ∧ r − t ∧ r| ≤ |s− t|.
Claim 1. (x− u)+ = (x+ − u)+.

Proof of Claim 1. Observe that

(3.11) (∀z ∈ E)(∀e ∈ E+) z ∧ e = z+ ∧ e− z−.

Indeed, (z∧e)+ = (z∧e)∨0 = (z∨0)∧(e∨0) = z+∧e and (z∧e)− =
(−(z∧e)

)∨0 =
(−z) ∨ (−e) ∨ 0 = z−, which implies (3.11). By (3.11), for every e ∈ E+ one has

(x + y) ∧ e = (x + y)+ ∧ e− (x + y)−

= (x+ + y+) ∧ e− (x− + y−)

= x+ ∧ e + y+ ∧ e− x− − y−

= x ∧ e + y ∧ e.

(3.12)

Now we obtain

x ∧ u = (x+ − x−) ∧ u
(3.12)
= x+ ∧ u + (−x−) ∧ u = x+ ∧ u− x−

and hence

(x− u)+
(3.3)
= x− x ∧ u = x− x+ ∧ u + x− = x+ − x+ ∧ u

(3.3)
= (x+ − u)+.

¤

Claim 2. (v − x)+ ∧ x+ = (v − x+)+ ∧ x+.



ε-SHADING OPERATOR AND ORDER CONTINUITY 9

Proof of Claim 2. We have

0 ≤ w := (v − x)+ ∧ x+ − (v − x+)+ ∧ x+

= (v − x+ + x−)+ ∧ x+ − (v − x+)+ ∧ x+

(3.10)

≤ (v − x+ + x−)+ − (v − x+)+

= (v − x+ + x−) ∨ 0− (v − x+) ∨ 0
(3.10)

≤ x−.

(3.13)

On the other hand, since (v−x)+ ∧x+ ⊥ x− and (v−x+)+ ∧x+ ⊥ x−, we have
w ⊥ x−. Together with (3.13), this yields that w = 0. ¤

Now we continue the proof of Lemma 3.3. By (3.3) and Claim 1,

(3.14) Q(x) = (x+ − x+ ∧ u) ∧ (v − x)+ ≤ x+ ∧ (v − x)+ ≤ x+

and analogously, Q(x+) ≤ x+. Hence,

Q(x) = Q(x) ∧ x+ and Q(x+) = Q(x+) ∧ x+.

Thus, by Claim 2,

Q(x) = (x+ − u)+ ∧ (v − x)+ ∧ x+

= (x+ − u)+ ∧ (v − x+)+ ∧ x+ = Q(x+)

and (3.9) is proved. So, Q is an OAO.
Item (i) is already proved by (3.9) and (3.14). Q preserves disjointness by (i).

The order continuity of Q follows from (ii). So, it remains to prove (ii). Observe
that, for every a, b, c, d ∈ E one has

|a ∧ b− c ∧ d| ≤ |a ∧ b− a ∧ d|+ |a ∧ d− c ∧ d|
(3.10)

≤ |b− d|+ |a− c|.
Hence, for every x, y ∈ E we obtain

|Q(x)−Q(y)| ≤
∣∣(x− u)+ − (y − u)+

∣∣ +
∣∣(v − x)+ − (v − y)+

∣∣ (3.10)

≤ 2|x− y|.
¤

Proof of Theorem3.2. By Lemma 3.3, Qε
e is a positive order continuous OAO and

(ii) holds true.
(i) The part (∀x ∈ E) 0 ≤ Qε

e(x) = Qε
e(x

+) ≤ x+ follows from Lemma 3.3, and
the inequality Qε

e(x
+) ≤ e follows from Lemma 3.1.

(iii) Fix any t ∈ Fe. By (3.1) and (3.3),

(3.15) Qε
e(t) =

1
ε

((
t− t ∧ (1− ε) e

) ∧ (
(1 + ε) e− t ∧ (1 + ε) e

))
.

Since (1− ε) t ≤ t, t ≤ e and e = t t (e− t) = t ∨ (e− t), one has

(1− ε) t ≤ t ∧ (1− ε) e = t ∧ (
(1− ε) t ∨ (1− ε)(e− t)

)
= (1− ε) t ∨ 0 = (1− ε) t

and hence

(3.16) t ∧ (1− ε) e = (1− ε) t.

On the other hand, (1 + ε) t ≤ (1 + ε) e implies

(3.17) εt ∧ (
(1 + ε) e− t

)
= εt.
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Finally, (3.15), (3.16) and (3.17) together give

Qε
e(t) =

1
ε

(
(t− t + εt

) ∧ (
(1 + ε) e− t

))
= t.

(iv) follows from (3.1).
(v) follows from Lemma 3.1.
(vi) Assume x− e is a projection element. Then by (2.1) and Lemma 3.1

(3.18) z := e−Px−e e = e−
∞∨

n=1

(e∧n|x−e|) =
∞∧

n=1

(e−e∧n|x−e|) =
∞∧

n=1

Q1/n
e (x).

Show that z = e∩∩∩ x. By (2.2), e = Px−e e t z, which implies that z v e. Then

z ∧ |x− z| = (e− Px−e e) ∧ ∣∣x− e + Px−e e
∣∣

= (e− Px−e e) ∧
∣∣Px−e(x− e) + Px−e e

∣∣

= (e− Px−e e) ∧ Px−e x
(2.2)
= 0,

which yields z v x. Assume t ∈ Fx∩Fe and prove that t v z. Observe that for every
n ∈ N the relation t v e implies t = Q

1/n
e (t) by (iii), and the relation t v x implies

Q
1/n
e (t) ≤ Q

1/n
e (x) by the positivity of Q

1/n
e . Hence, t ≤ ∧∞

n=1 Q
1/n
e (x)

(3.18)
= z. By

(2a) of Proposition 2.1, the orders v and ≤ coincide on Fe and therefore t v z. The
relation z = e∩∩∩ x is proved. Together with (3.18) this gives (vi).

(vii) Given any x ∈ E, one has

w :=
∣∣εe′ ∧ (x− e)− εe′ ∧ (x− e′)

∣∣ ≤ x− e− x + e′ = e′′.

On the other hand, 0 ≤ w ≤ εe′. Hence, 0 ≤ w ≤ e′ ∧ e′′ = 0, which implies
w = 0. Analogously, εe′ ∧ (e− x) = εe′ ∧ (e′ − x). By that

εe′ ∧ |x− e| = εe′ ∧ (
(x− e) ∨ (e− x)

)

=
(
εe′ ∧ (x− e)

) ∨ (
εe′ ∧ (e− x)

)

=
(
εe′ ∧ (x− e′)

) ∨ (
εe′ ∧ (e′ − x)

)

= εe′ ∧ |x− e′| = εe′ − εQε
e′(x).

Analogously, e′′ ∧ 1
ε |x− e| = e′′ −Qε

e′′(x). Hence

Qε
e′(x) + Qε

e′′(x) = e′ − e′ ∧ 1
ε
|x− e|+ e′′ − e′′ ∧ 1

ε
|x− e|

= e−
((

e′ ∧ 1
ε
|x− e|) ∨ (

e′′ ∧ 1
ε
|x− e|)

)

= e− (e′ ∨ e′′) ∧ 1
ε
|x− e| = Qε

e(x)

and the first part of (vii) is proved. Assume now that e′ and e′′ are projection
elements. By (2) of Theorem 2.2,

(3.19)
(
Qε

e′ ∧Qε
e′′

)
(x) = inf

{
Qε

e′(y) + Qε
e′′(z) : x = y t z

}
.

Set y = Pe′′x t (x− Pex) and z = Pe′x. Then

Qε
e′(y) = Qε

e′
(
Pe′′x

)
+ Qε

e′
(
x− Pex

)

(i)

≤ (
Pe′′x

) ∧ e′ +
(
x− Pex

) ∧ e′
(2.2)
= 0.

Analogously, Qε
e′′(z) = 0 which confirms by (3.19) that Qε

e′ ⊥ Qε
e′′ . ¤
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4. A uniformly-to-order continuous and horizontally-to-order
continuous OAO, which is not order continuous

In the present section, using the technique of ε-shading operators, we provide
the first example of such an operator. Moreover, it is a functional, that is, with
values in R. It is defined on C[0, 1] possessing the intersection property, but failing
to have the principal projection property.

Theorem 4.1. There exists an order discontinuous orthogonally additive functional
f : C[0, 1] → [0, 1], which is uniformly-to-order continuous and horizontally-to-order
continuous.

Proof. Define a sequence (en)∞n=1 in C[0, 1] as follows. Let en : [0, 1] → [0, 1] be the
piece-wise linear function with nodes at the points

(
0, 1

2 + 1
n

)
,
(

1
n , 1

n

)
and

(
1, 1

n

)
of

R2, that is,

en(t) =





1
2 + 1

n − nt
2 , if t ∈ [

0, 1
n

)

1
n , if t ∈ [

1
n , 1

] , n ∈ N.

Observe that en ∈ C[0, 1] and en+1(t) < en(t) for all t ∈ [0, 1] and n ∈ N. Choose
numbers εn > 0 so that

(4.1) (∀n ∈ N)(∀t ∈ [0, 1]) en+1(t)(1 + εn+1) < en(t)(1− εn).

Then define a functional f : C[0, 1] → [0, 1] by setting

(4.2) f(x) =
∞∑

n=1

n min
t∈[0,1]

(
Qεn

en
(x)

)
(t),

where Qεn
en

is the εn-shading operator generated by en. To show that the functional
is well defined by (4.2), set

Bn :=
{
x ∈ C[0, 1] : (∀t ∈ [0, 1]) en(t)(1− εn) < x(t) < en(t)(1 + εn)

}
, n ∈ N.

By (4.1), (Bn)∞n=1 is a disjoint sequence of open subsets of C[0, 1]. By (3.1),

(4.3) (∀x ∈ C[0, 1])(∀n ∈ N) min
t∈[0,1]

(
Qεn

en
(x)

)
(t) > 0 ⇒ x ∈ Bn.

By (4.1), this implies that for every x ∈ C[0, 1] at most one of the summands in
(4.2) is nonzero, and so f is well defined by (4.2).

Prove that f is orthogonally additive. Let x, y ∈ C[0, 1] and x ⊥ y. If either
x = 0 or y = 0 then f(x + y) = f(x) + f(y), because f(0) = 0. Now suppose
x 6= 0 6= y. Then x ⊥ y implies that there is t ∈ [0, 1] such that x(t) = y(t) = 0.
Taking into account that every element of Bn takes nonzero values only for all
n ∈ N, this yields by (4.3) that f(x) = f(y) = f(x + y) = 0. So f is orthogonally
additive.

Prove that f is uniformly-to-order continuous. Since the uniformly convergence
in C[0, 1] is equivalent to the norm-convergence, it is enough to show that f is
norm-to-order continuous. According to Theorem 3.2 (ii), every function

fn(x) = n min
t∈[0,1]

(
Qεn

en
(x)

)
(t)

is norm-to-order continuous. By (4.3),

supp fn = {x ∈ C[0, 1] : fn(x) 6= 0} = Bn.
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Since (en)∞n=1 has no a norm-convergent subsequence and εn → 0, the sequence
(Bn)∞n=1 is locally finite with respect to the norm. Therefore, f is norm-to-order
continuous as locally finite sum of norm-to-order continuous functions.

Prove that f is horizontally-to-order continuous. Let x ∈ C[0, 1] and (xα)α∈A

be a net in C[0, 1] such that xα
h−→ x. Consider two cases.

(i) (∃α0 ∈ A)(∀α ≥ α0) xα = x. Then obviously f(xα) → f(x).
(ii) (∀β ∈ A)(∃α ≥ β) xα 6= x. Since xα v xβ v x for all α < β, we have that

(∀α ∈ A) xα 6= x. By the peculiarity of C[0, 1], for every xα vanishes at some point
of [0, 1], as well as x. By (4.3), f(x) = 0 = f(xα) for all α ∈ A.

The horizontal-to-order continuity of f is proved.
To prove that f is not order continuous, observe that en

s.o−→ 0 and f(en) = 1 6=
0 = f(0) for all n ∈ N. ¤

5. Continuity of horizontally and uniformly continuous operators

In this section, we provide sufficient conditions on Riesz spaces E, F , under which
every horizontally-to-order continuous and uniformly-to-order continuous OAO is
order continuous, giving a partial answer to Problem 1.

Let F be a Riesz space. By D(F ) we denote the set of all Riesz spaces E such
that every abstract Uryson operator T : E → F which is both horizontally-to-order
continuous and uniformly-to-order continuous, is order continuous. Next is our
main result of the section.

Our first result here is the following theorem.

Theorem 5.1. Let E be a Riesz space such that for every net (uα)α∈A in E with
uα ↓ 0 there exists a net (Ei)i∈I of projection bands Ei in E such that

(1) Pi(uα) ⇒α 0 for every i ∈ I, where Pi is the order projection of E onto Ei;
(2) Ei ⊆ Ej for every i, j ∈ I with i < j;

(3) Pi(x) h−→i x for every x ∈ E.

Then E ∈ D(F ) for every Riesz space F with the principal projection property.

For the proof of Theorem 5.1 we need some lemmas.

Lemma 5.2. Let E be a Dedekind complete Riesz space and A an upper bounded
subset of E with 0 ∈ A. If v ∈ E+ satisfies

sup{y ∈ A : x + y ∈ A} ≥ v

for every x ∈ A then v = 0.

Proof. For every x ∈ A we set Ax = {y ∈ A : x+ y ∈ A} and ux = sup Ax. Assume
that v > 0. Since E is an Archimedean Riesz space, there exists a number n ∈ N
such that n

2 v 6≤ u0 = sup A. Then w0 := (n
2 v − u0)+ > 0. Let x0 = 0. Now we

construct finite sequences (xk)n
k=1 and (wk)n

k=1 of elements xk ∈ A and wk ∈ E+

such that for every k = 1, . . . , n

(1) x0 + · · ·+ xk−1 ∈ A;
(2) xk ∈ Ax0+···+xk−1 ;
(3) wk ∈ Bwk−1 where Bwk−1 is the principal band generated by wk−1;
(4) Pk(xk − 1

2v) = wk > 0, where Pk is the order projection onto Bwk
.
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Since w0 ≤ n
2 v, w0 ∈ Bv where Bv is the principal band generated by v. There-

fore, P0(v) > 0 where P0 is the order projection onto Bw0 . Since u0 ≥ v and

P0(u0) = P0(sup A0) = sup{P0(x) : x ∈ A0},
one has

P0(u0) ≥ P0(v) > P0( 1
2v)

and there exists x1 ∈ A0 such that P0(x1) 6≤ P0( 1
2v). We set

w1 = (P0(x1)− P0( 1
2v))+.

Then w1 ∈ Bw0 and w1 > 0. Moreover,

P1(x1 − 1
2v) = P1(P0(x1 − 1

2v)) = P1(w1) = w1.

Since w1 ∈ Bw0 and w0 ∈ Bv, one has w1 ∈ Bv and P1(v) > 0. Hence, taking
into account that (by the choice of x1) x0 + x1 ∈ A, we obtain

P1(ux1) = sup{P1(x) : x ∈ Ax0+x1} ≥ P1(v) > P1(1
2v).

Therefore, there exists x2 ∈ Ax0+x1 such that P1(x2) 6≤ P1( 1
2v). We set

w2 = (P1(x2)− P1( 1
2v))+.

It is clear that w2 ∈ Bw1 and w2 > 0. Moreover,

P2(x2 − 1
2v) = P2(P1(x2 − 1

2v)) = P2(w2) = w2.

To complete the construction of (xk)n
k=1 and (wk)n

k=1, it remains to repeat the
reasoning n− 2 times.

Now we consider the element

x = x1 + x2 + . . . xn.

By (2), x ∈ A. On the one hand

Pn(n
2 v − x) ≥ Pn(n

2 v − u0) = Pn(P0(n
2 v − u0)) = Pn(w0) ≥ 0.

But on the other hand we have that

Pn(x− n
2 v) =

n∑

k=1

Pn(xk − 1
2v)

=
n∑

k=1

Pn(Pk(xk − 1
2v))

=
n∑

k=1

Pn(wk) ≥ wn > 0,

a contradiction. ¤
Lemma 5.3. Let E be a Riesz space and F a Dedekind complete Riesz space,
T : E → F a (bounded???) function and x0 ∈ E. Then the following conditions
are equivalent:

(i) T is order continuous at x0;
(ii) for every net (uα)α∈A in E such that uα ↓ 0 we have that

(5.1) inf
α∈A

vα = 0 = inf
α∈A

wα,

where vα = sup{T (x) − T (x0) : |x − x0| ≤ uα} and wα = − inf{T (x) −
T (x0) : |x− x0| ≤ uα}.
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Proof. (i) ⇒ (ii). It is enough to prove the first equality only, because the second
equality coincide with the first one for −T in place of T . If A has a maximal element
then the claim of the lemma is obvious. Assume A has no maximal element. Fix
any net (uα)α∈A in E with uα ↓ 0. Endow the set

B :=
{
(α, β) : α ∈ A, β ∈ [−uα, uα]

}

with the following partial order: (α′, β′) ≤ (α′′, β′′) if and only if either α′ < α′′

or α′ = α′′ and β′ ≤ β′′. Obviously, B is a directed set. Now consider the net(
x(α,β)

)
(α,β)∈B

defined by setting x(α,β) = x0 + β for all (α, β) ∈ B. Set also
u′(α,β) := uα for all (α, β) ∈ B. Since uα ↓ 0, we have u′(α,β) ↓ 0 as well. Since

(∀(α, β) ∈ B
) |x(α,β) − x0| = |β| ≤ uα = u′(α,β),

one has x(α,β)
s.o−→ x0. By the order continuity of T at x0, choose a net

(
t(α,β)

)
(α,β)∈B

in F and (α0, β0) ∈ B so that t(α,β) ↓ 0 and
(∀(α, β) ≥ (α0, β0)

) ∣∣T (x0 + β)− T (x0)
∣∣ =

∣∣T (x(α,β))− T (x0)
∣∣ ≤ t(α,β).

Then

(∀α > α0)(∀β ∈ [−uα, uα])
∣∣T (x0 + β)− T (x0)

∣∣ ≤ t(α,β) ≤ t(α,−uα).

Hence,
(∀α > α0) vα ≤ t(α,−uα).

Since t(α,−uα) ↓ 0, the latter inequality implies the first equality in (5.1).
(ii) ⇒ (i) is obvious. ¤

Given any nonempty set Ω, by c00(Ω) we denote the Riesz space of all functions
f : Ω → R with finite support, endowed with the natural order. Clearly, for every
finite set Ω the uniform convergence in c00(Ω) is equivalent to the order convergence.
Thus, c00(Ω) ∈ D(F ) for every Riesz space F .

Corollary 5.4. Let Ω be an infinite set and E ⊆ RΩ be a Riesz space with c00(Ω) ⊆
E. Then E ∈ D(F ) for every Riesz space F with the principal projection property.

Proof. Let I be the directed set of all nonempty finite subsets i ⊆ Ω ordered by
inclusion i ≤ j ⇔ i ⊆ j. For every i ∈ I we set Ei = {f ∈ E : supp f ⊆ i} and use
Theorem5.6. ¤

Corollary 5.5. Let µ be a σ-finite measure on a measure space (X, Σ, µ) and
p ∈ [0,∞]. Then Lp(µ) ∈ D(F ) for every Riesz space F with the principal projection
property.

Proof. It is enough to show that the Riesz space E fulfils the assumptions of The-
orem5.1. Let (uα)α∈A be a net in E such that uα ↓ 0. Using Egorov’s theorem,
we construct an increasing sequence (Xn)∞n=1 of measurable sets Xn ⊆ X such
that µ(X \ ⋃∞

n=1 Xn) = 0 and uα|Xn ⇒ 0 for every n ∈ N. It remains to set
En = {x · 1Xn : x ∈ E} for every n ∈ N. ¤

Theorem 5.6. Let E be a Riesz space, F be a Riesz space with the principal
projection property, I be a directed set and (Ei)i∈I be a family of projection bands
Ei in E such that

(1) Ei ∈ D(F ) for every i ∈ I;
(2) Ei ⊆ Ej for every i, j ∈ I with i < j;
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(3) Pi(x) h−→ x for every x ∈ E, where Pi is the order projection associated
with Ei.

Then E ∈ D(F ).

Proof. If the directed set I has a maximal element i0, then it follows from (1)− (3)
that E = Ei0 ∈ D(F ).

Let I has no maximal element and T : E → F be an arbitrary Uryson operator
T : E → F which is both horizontally-to-order continuous and uniformly-to-order
continuous. For every i ∈ I we set Ti = T |Ei

. Clearly, every Ti is an abstract
Uryson operator which is both horizontally-to-order continuous and uniformly-to-
order continuous. Thus, according to (1), every Ti is order continuous.

Fix an element x0 ∈ E and show that T is order continuous at x0. Let (uα)α∈A

be a net in E such that uα ↓ 0. For every α ∈ A we set

Yα = {T (x)− T (x0) : |x− x0| ≤ uα} and vα = sup Yα.

According to Proposition 5.3, it enough to show that

v := inf{vα : α ∈ A} = 0.

For every α ∈ A and i ∈ I we set

Yα,i = {T (Pi(x))− T (Pi(x0)) : |x− x0| ≤ uα},
Zα,i =

⋃

j>i

{T (Pj(x)− Pi(x))− T (Pj(x0)− Pi(x0)) : |x− x0| ≤ uα},

Zα =
⋃

j∈I

Yα,j ,

vα,i = sup Yα,i, wα,i = sup Zα,i and wα = sup Zα.

Claim 1. wα = vα and consequently wα ↓ v.
Since Zα ⊆ Yα, wα ≤ vα. It remains to show that y ≤ wα for every y ∈ Yα.

Let y ∈ Yα be an arbitrary point and x ∈ E such that T (x) − T (x0) = y and
|x − x0| ≤ uα. According to (3), Pi(x) h−→ x and Pi(x0)

h−→ x0. It follows from
the horizontally-to-order continuity of T that

T (Pi(x)) o−→ Tx and T (Pi(x0))
o−→ T (x0).

Therefore,
zi := T (Pi(x))− T (Pi(x0))

o−→ T (x)− T (x0) = y.

Since zi ∈ Yα,i ⊆ Zα, zi ≤ wα. Thus, y ≤ wα.
Claim 2. Zα = Yα,i + Zα,i and wα = vα,i + wα,i.
Notice that according to (2) and [3, Theorem 1.46] for every x ∈ E and j > i we

have that Pi(x) v Pj(x). Since T is orthogonally additive,

T (Pj(x))−T (Pj(x0)) = T (Pi(x))−T (Pi(x0))+T (Pj(x)−Pi(x))−T (Pj(x0)−Pi(x0)).

Therefore, Zα ⊆ Yα,i + Zα,i.
It remains to show that Zα ⊇ Yα,i +Zα,i. Let y ∈ Yα,i and z ∈ Zα,i be arbitrary

elements. Then there exist x1, x2 ∈ E and j > i such that

|x1 − x0| ≤ uα, y = T (Pi(x1))− T (Pi(x0)),

|x2 − x0| ≤ uα and z = T (Pj(x2)− Pi(x2))− T (Pj(x0)− Pi(x0)).
Since Pj(x′′)− Pi(x′′) ⊥ Pi(x′) and T is orthogonally additive,

T (Pj(x′′)− Pi(x′′)) + T (Pi(x′)) = T (Pj(x′′)− Pi(x′′) + Pi(x′))
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for every x′, x′′ ∈ E. Therefore,

y + z = T (Pj(x2)− Pi(x2) + Pi(x1))− T (Pj(x0).

We consider the element x = (x2 − Pi(x2)) + Pi(x1). Notice that Pi(x) = Pi(x1)
and

Pj(x) = Pj(x2)− Pj(Pi(x2)) + Pj(Pi(x1)) = Pj(x2)− Pi(x2) + Pi(x1).

Therefore, in particular,

y + z = T (Pj(x))− T (Pj(x0).

Moreover,
Qi(x) = Qi(x2),

where Qi(u) = u− Pi(u). Now we have

|x− x0| = |Pi(x− x0) + Qi(x− x0)| ≤ |Pi(x1 − x0)|+ |Qi(x2 − x0)| ≤
≤ Pi(uα) + Qi(uα) = uα.

Thus, y + z ∈ Yα,j ⊆ Zα.
Claim 3. For every fixed i ∈ I we have that vα,i ↓ 0.
Since uα ↓ 0, Pi(uα) ↓ 0. It follows from the order continuity of Ti and Proposi-

tion 5.3 that ṽα ↓ 0, where

Ỹα = {Ti(x)−Ti(Pi(x0)) : x ∈ Ei, |x−Pi(x0)| ≤ Pi(uα)} and ṽα = sup Ỹα.

Notice that if |x− x0| ≤ uα then

|Pi(x)− Pi(x0)| = |Pi(x− x0)| ≤ Pi(uα).

Therefore, Yα,i ⊆ Ỹα, vα,i ≤ ṽα and vα,i ↓ 0.
Claim 4. wα,i ≥ v.
Fix any i ∈ I. According to Claim 1-3, we have that wα,i = wα − vα,i, wα ↓ v

and vα,i ↓ 0. Thus, wα,i
o−→ v. Moreover, wα,i ↓. Therefore,

wα,i ≥ inf{wα,j : j ∈ I} = v.

Claim 5. v = 0.
Fix any α ∈ A. It is enough to show that the set B = Zα satisfies the following

condition from Lemma 5.2

sup{z ∈ B : y + z ∈ B} ≥ v

for every y ∈ B. Indeed, let y ∈ Zα be an arbitrary element. We choose i ∈ I such
that y ∈ Yα,i. According to Claim 2 and Claim 4,

Zα,i ⊆ {z ∈ B : y + z ∈ B}
and

sup{z ∈ B : y + z ∈ B} ≥ wα,i ≥ v.

¤

Proof of Theorem5.1. Let F be a Riesz space with the principal projection property
and T : E → F be an arbitrary Uryson operator which is both horizontally-to-order
continuous and uniformly-to-order continuous. Fix an element x0 ∈ E and show
that T is order continuous at x0. Let (uα)α∈A be a net in E such that uα ↓ 0. For
every α ∈ A we set

Yα = {T (x)− T (x0) : |x− x0| ≤ uα} and vα = sup Yα.
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According to Proposition 5.3, it enough to show that

v := inf{vα : α ∈ A} = 0.

We choose a net (Ei)i∈I of projection bands Ei in E which satisfies conditions
(1) − (3). For every i ∈ I we set Ti = T |Ei

. Clearly, every Ti is an abstract
Uryson operator which is both horizontally-to-order continuous and uniformly-to-
order continuous.

If the directed set I has a maximal element i0, then it follows from (1)− (3) that
E = Ei0 , T = Ti0 and v = 0.

Let I has no maximal element. For every α ∈ A and i ∈ I we set

Yα,i = {T (Pi(x))− T (Pi(x0)) : |x− x0| ≤ uα},
Zα,i =

⋃

j>i

{T (Pj(x)− Pi(x))− T (Pj(x0)− Pi(x0)) : |x− x0| ≤ uα},

Zα =
⋃

j∈I

Yα,j ,

vα,i = sup Yα,i, wα,i = sup Zα,i and wα = sup Zα.

Claim 1. wα = vα and consequently wα ↓ v.
Since Zα ⊆ Yα, wα ≤ vα. It remains to show that y ≤ wα for every y ∈ Yα.

Let y ∈ Yα be an arbitrary point and x ∈ E such that T (x) − T (x0) = y and
|x − x0| ≤ uα. According to (3), Pi(x) h−→ x and Pi(x0)

h−→ x0. It follows from
the horizontally-to-order continuity of T that

T (Pi(x)) o−→ Tx and T (Pi(x0))
o−→ T (x0).

Therefore,
zi := T (Pi(x))− T (Pi(x0))

o−→ T (x)− T (x0) = y.

Since zi ∈ Yα,i ⊆ Zα, zi ≤ wα. Thus, y ≤ wα.
Claim 2. Zα = Yα,i + Zα,i and wα = vα,i + wα,i.
Notice that according to (2) and [3, Theorem 1.46] for every x ∈ E and j > i we

have that Pi(x) v Pj(x). Since T is orthogonally additive,

T (Pj(x))−T (Pj(x0)) = T (Pi(x))−T (Pi(x0))+T (Pj(x)−Pi(x))−T (Pj(x0)−Pi(x0)).

Therefore, Zα ⊆ Yα,i + Zα,i.
It remains to show that Zα ⊇ Yα,i +Zα,i. Let y ∈ Yα,i and z ∈ Zα,i be arbitrary

elements. Then there exist x1, x2 ∈ E and j > i such that

|x1 − x0| ≤ uα, y = T (Pi(x1))− T (Pi(x0)),

|x2 − x0| ≤ uα and z = T (Pj(x2)− Pi(x2))− T (Pj(x0)− Pi(x0)).
Since Pj(x′′)− Pi(x′′) ⊥ Pi(x′) and T is orthogonally additive,

T (Pj(x′′)− Pi(x′′)) + T (Pi(x′)) = T (Pj(x′′)− Pi(x′′) + Pi(x′))

for every x′, x′′ ∈ E. Therefore,

y + z = T (Pj(x2)− Pi(x2) + Pi(x1))− T (Pj(x0).

We consider the element x = (x2 − Pi(x2)) + Pi(x1). Notice that Pi(x) = Pi(x1)
and

Pj(x) = Pj(x2)− Pj(Pi(x2)) + Pj(Pi(x1)) = Pj(x2)− Pi(x2) + Pi(x1).
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Therefore, in particular,

y + z = T (Pj(x))− T (Pj(x0).

Moreover,
Qi(x) = Qi(x2),

where Qi(u) = u− Pi(u). Now we have

|x− x0| = |Pi(x− x0) + Qi(x− x0)| ≤ |Pi(x1 − x0)|+ |Qi(x2 − x0)| ≤
≤ Pi(uα) + Qi(uα) = uα.

Thus, y + z ∈ Yα,j ⊆ Zα.
Claim 3. For every fixed i ∈ I we have that vα,i ↓ 0.
Since Pi(uα) ⇒ 0 and Ti is uniformly-to-order continuous at x0, it follows from

Proposition 5.3 that ṽα ↓ 0, where

Ỹα = {Ti(x)−Ti(Pi(x0)) : x ∈ Ei, |x−Pi(x0)| ≤ Pi(uα)} and ṽα = sup Ỹα.

Notice that if |x− x0| ≤ uα then

|Pi(x)− Pi(x0)| = |Pi(x− x0)| ≤ Pi(uα).

Therefore, Yα,i ⊆ Ỹα, vα,i ≤ ṽα and vα,i ↓ 0.
Claim 4. wα,i ≥ v.
Fix any i ∈ I. According to Claim 1-3, we have that wα,i = wα − vα,i, wα ↓ v

and vα,i ↓ 0. Thus, wα,i
o−→ v. Moreover, wα,i ↓. Therefore,

wα,i ≥ inf{wα,j : j ∈ I} = v.

Claim 5. v = 0.
Fix any α ∈ A. It is enough to show that the set B = Zα satisfies the following

condition from Lemma 5.2

sup{z ∈ B : y + z ∈ B} ≥ v

for every y ∈ B. Indeed, let y ∈ Zα be an arbitrary element. We choose i ∈ I such
that y ∈ Yα,i. According to Claim 2 and Claim 4,

Zα,i ⊆ {z ∈ B : y + z ∈ B}
and

sup{z ∈ B : y + z ∈ B} ≥ wα,i ≥ v.

¤

6. When does the order continuity of T imply that of |T |?
The following theorem gives a negative answer to Problem 2. Moreover, in the

next section we provide an example which demonstrates that the assumption on
E to have the principal projection property in Theorem6.1 cannot be removed, or
even replaced with the intersection property.

Theorem 6.1. Let E be a Riesz space with the principal projection property, F a
Dedekind complete Riesz space and T ∈ P(E,F ). If T is order continuous then |T |
is order continuous.

For the proof, we need the following lemma.
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Lemma 6.2. Let E be a Riesz space, x, y ∈ E and u v x. If u is a projection
element then there exists v v y such that

x− u ⊥ v, y − v ⊥ u and u− v v x− y.

Proof. Set

v := Puy
(2.1)
= sup

n
(y+ ∧ n|u|)− sup

n
(y− ∧ n|u|)

and prove that v possesses the desired properties. The relation v v y follows from
(iii) of [3, Theorem 1.44].

Since x− u ⊥ nu for all n ∈ N, one has

|x− u| ∧ v± = |x− u| ∧ sup
n

(y± ∧ n|u|) = sup
n

(|x− u| ∧ y± ∧ n|u|) = 0,

which implies x− u ⊥ v.
Observe that |v| = Pu|y|. Since |y − v| ∧ |y| = |y − v|, we obtain

0 = |y − v| ∧ |v| = |y − v| ∧ sup
n

(|y| ∧ n|u|)
= sup

n
(|y − v| ∧ |y| ∧ n|u|) ≥ |y − v| ∧ |u|,

which yields y − v ⊥ u.
Since x− u ⊥ u and x− u ⊥ v, one has x− u ⊥ u− v. Likewise, y − v ⊥ v and

y − v ⊥ u imply y − v ⊥ u− v. Finally, the latter two conclusions give

(x− y)− (u− v) = (x− u)− (y − v) ⊥ u− v,

which yields u− v v x− y. ¤

The following simple example shows that Lemma6.2 is false without the as-
sumption on u to be a projection element. Let E = C[0, 1], x(t) = |t − 1/2| for
all t ∈ [0, 1], u(t) = 1/2 − t if t ≤ 1/2 and u(t) = 0, if t > 1/2, and y(t) = 1
for all t ∈ [0, 1]. Then y has two fragments 0 and y, none of which satisfies the
requirements.

Proof of Theorem6.1. Let x ∈ E be an arbitrary point and (xα)α∈A a net in E with
xα

s.o−→ x in E. Let (uα)α∈A be a net in E such that uα ↓ 0 and |xα − x| ≤ uα for
some α0 ∈ A and all α ≥ α0. To prove the order continuity of |T |, by Theorem 1.3
it is enough to prove that

(6.1)
(
T+(xα)− T+(x)

)+ o−→ 0.

In the case where A has a maximal element the proof is obvious. So assume that
A has no maximal element. For every α ∈ A we set zα = xα − x and

Bα = {(α, z) : z ∈ Fzα}
and endow the set B =

⊔
α∈A Bα with the lexicographic partial order ≤, that is

(α, z) ≤ (α′, z′) ⇔ ((α < α′) or (α = α′ and z v z′).

Clearly, (B,≤) is a directed set.
For any β = (α, z) ∈ B we set xβ = x+z and show that the net (xβ)β∈B strongly

order converges to x in E. For every β = (α, z) ∈ B we set uβ = uα. Since uα ↓ 0,
one has uβ ↓ 0. Moreover,

|xβ − x| = |z| ≤ |zα| = |x− xα| ≤ uα = uβ

for every β = (α, z) ≥ β0 = (α0, 0).
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By the order continuity of T at x, there exists a net (vβ)β∈B in F such that
vβ ↓ 0 and |T (xβ)− T (x)| ≤ vβ for some β1 = (α1, x1) ∈ B and all β ≥ β1.

For every α ∈ A we set wα = v(α,0). Then wα ≥ wα′ for all α, α′ ∈ A with
α < α′. Since A has no maximal element, for every α ∈ A there exists α′ ∈ A with
α < α′, and for every z ∈ Fzα

we have that

v(α,z) ≥ v(α′,0) = wα′ .

Therefore,
0 =

∧

β∈B

vβ =
∧

α∈A

∧

z∈Fzα

v(α,z) ≥
∧

α∈A

wα.

Thus, wα ↓ 0.
Let α2 > α1 be a fixed index and α ≥ α2 an arbitrary index. Let s v xα be an

arbitrary fragment. By Lemma 6.2, there exists ts v x such that

s− ts v xα − x = zα, s ⊥ x− ts and ts ⊥ x− ts

so z := s− ts ∈ Fzα
, β = (α, z) ≥ β1 and∣∣T (s)− T (ts)

∣∣ =
∣∣T (s) + T (x− ts)− T (ts)− T (x− ts)

∣∣
=

∣∣T (x + z)− T (x)
∣∣

=
∣∣T (xβ)− T (x)

∣∣ ≤ vβ ≤ v(α,0) = wα.

Thus,
T (s) ≤ T (ts) + wα

for every s v xα. Hence,

T+(xα) = sup{T (s) : s ∈ Fxα}
≤ sup{T (ts) + wα : s ∈ Fxα}
≤ sup{T (r) + wα : r ∈ Fx} = T+(x) + wα,

which implies (6.1). ¤

The following proposition shows that, the order continuity of T at zero implies
the order continuity of |T | at zero without any assumption on E.

Proposition 6.3. Let E and F be Riesz spaces with F Dedekind complete and
T ∈ OAr(E,F ). If T is order continuous at 0 then |T | is order continuous at 0.

Proof. Let (xα)α∈A be a in E with xα
s.o−→ 0. We prove that |T |(xα) o−→ 0. In the

case where A has a maximal element the proof is obvious. So assume that A has no
maximal element. Let (uα)α∈A be a net in E such that |xα| ≤ uα for all α ≥ α0,
where α0 ∈ A and uα ↓ 0. For every α ∈ A we set

Bα = {(α, x) : x ∈ Fxα}
and endow the set B =

⊔
α∈A Bα with the lexicographic partial order ≤, that is

(α, x) ≤ (α′, x′) ⇔ ((α < α′) or (α = α′ and x v x′).

Clearly, (B,≤) is a directed set.
For any β = (α, x) ∈ B we set xβ = x and show that the net (xβ)β∈B strongly

order converges to 0 in E. For every β = (α, x) ∈ B we set uβ := uα. Since uα ↓ 0,
one has uβ ↓ 0. Moreover,

|xβ | ≤ |xα| ≤ uα = uβ
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for every β = (α, x) ≥ β0 := (α0, 0).
It follows from the order continuity of T at 0 that there exists a net (vβ)β∈B in

F such that vβ ↓ 0 and |T (xβ)| ≤ vβ for some β1 = (α1, x1) ∈ B and all β ≥ β1.
For every α ∈ A we set wα = v(α,0). Observe that wα ≥ wα′ for every α, α′ ∈ A

with α < α′. Since A has no maximal element, for every α ∈ A there exists α′ ∈ A
with α < α′, and for every x ∈ Fxα we have v(α,x) ≥ v(α′,0) = wα′ . Therefore,

0 =
∧

β∈B

vβ =
∧

α∈A

∧

x∈Fxα

v(α,x) ≥
∧

α∈A

wα.

Thus, wα ↓ 0.
Let α2 be a fixed index with α2 > α1 and α ≥ α2 be an arbitrary index. Then

β = (α, x) ≥ (α, 0) ≥ β1

for every x ∈ Fxα
. Therefore,

|T (x)| = |T (xβ)| ≤ vβ ≤ v(α,0) = wα

for every x ∈ Fxα
, by Theorem 2.2, (3)

T+(xα) = sup{Tx : x ∈ Fxα} ≤ wα.

Thus, T+(xα) o−→ 0 in F . Since |T | = T − 2T+ and T (xα) o−→ 0, we obtain
|T |(xα) o−→ 0. ¤

Remark 6.4. As the above proof shows, the claim of Proposition 6.3 is valid if we
replace the strong order convergence of nets in E with the weak order convergence.

7. An order continuous OAO with discontinuous modulus

In this section, we provide the first example of an order continuous abstract
Uryson operator T ∈ U(E, F ) between Riesz spaces E, F with F Dedekind complete
such that the modulus |T | is not order continuous.

Given Riesz spaces E, F, G with F ⊆ G and a mapping f : E → F , by fG we
denote the same mapping fG : E → G. By C we denote the Dedekind completion
of C[0, 1] in the sense that C[0, 1] is a majorizing order dense Riesz subspace of C.
By O(E, F ) we denote the set of all OAOs T : E → F , which is an ordered vector
space with respect to the order S ≤ T if and only if T − S ≥ 0. For E = F we set
O(E) := O(E, E).

Theorem 7.1. There exists a linear2 order continuous operator S ∈ U(
C[0, 1], C

)
with order discontinuous |S|.

At the first step, we construct an operator T : C[0, 1] → C[0, 1] with the same
properties and then obtain the desired operator S as S := TC .

Theorem 7.2. There exist linear order continuous order bounded operators
T1, T2 : C[0, 1] → C[0, 1] such that

(1) the moduli |T1| and |T2| exist in O(
C[0, 1]

)
and are order continuous;

(2) the operator T := T1 + T2 has the modulus |T | in O(
C[0, 1]

)
;

(3) the operator |T | is not order continuous;
(4) one has |T |C = |TC |, where by |TC | we mean the modulus of TC in the

Dedekind complete Riesz space U(C[0, 1], C).

2Although S is linear, the modulus |S| is considered as an OAO in U(
C[0, 1], C

)
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To prove Theorem 7.2, we need some lemmas and preliminaries.
For every x ∈ C[0, 1] we set

ax =
{

0, if x(t) 6= 0 on [0, 1
2 ]

max{t ∈ [0, 1
2 ] : x(t) = 0}, if {t ∈ [0, 1

2 ] : x(t) = 0} 6= ∅,

bx =
{

1, if x(t) 6= 0 on [ 12 , 1]
min{t ∈ [ 12 , 1] : x(t) = 0}, if {t ∈ [ 12 , 1] : x(t) = 0} 6= ∅,

xc = x · 1[ax,bx],

xl =
{

0, if ax = 0
x · 1[0,ax], if ax 6= 0

and

xr =
{

0, if bx = 1
x · 1[bx,1], if bx 6= 1.

The following two propositions are obvious.

Proposition 7.3. For every x ∈ C[0, 1] one has
(1) xl, xc, xr ∈ Fx;
(2) x = xl t xc t xr.

Proposition 7.4. Let x, y ∈ C[0, 1] with x ⊥ y. Then
(1) xl ⊥ yl and (x + y)l = xl + yl;
(2) xr ⊥ yr and (x + y)r = xr + yr;
(3) (x + y)c = xc + yc, moreover, xc = 0 or yc = 0.

Lemma 7.5. Let ϕ : [a, b] → [c, d] be a strictly monotone continuous function and
T : C[c, d] → C[a, b], Tx(t) = x(ϕ(t)). Then

(1) T is a linear order continuous OAO;
(2) if x1, x2 ∈ C[c, d] and x1 ⊥ x2 then Tx1 ⊥ Tx2;
(3) there exists the modulus |T | of T in O(

C[0, 1]
)
, which is order continuous.

Proof. (1) is obvious. Verify (2). Let x1, x2 ∈ C[c, d] and x1 ⊥ x2, y1 = Tx1. Set

A1 = {t ∈ [c, d] : x1(t) 6= 0} and A2 = {t ∈ [c, d] : x2(t) 6= 0}.
The condition x1 ⊥ x2 means that A1 ∩A2 = ∅. Since ϕ is strictly monotone,

ϕ−1(A1) ∩ ϕ−1(A2) = ∅.
Therefore, Tx1 ⊥ Tx2.

To prove (3), consider the operator S : C[c, d] → C[a, b], S(x) = |T (x)|. It follows
from (1) and (2) that S is an order continuous OAO. Moreover, S = sup{T,−T}.
Thus, |T | = S. ¤

Proof of Theorem7.2. Consider the following operators T1, T2 : C[0, 1] → C[0, 1],

T1x(t) = x( t
2 ), t ∈ [0, 1]

and
T2x(t) = −x( t+1

2 ), t ∈ [0, 1].
By Lemma 7.5, T1 and T2 are linear order continuous order bounded operators
which satisfy condition (1) of Theorem 7.2.

To prove (2), consider the operator S : C[0, 1] → C[0, 1],

S(x) = |T (xl)|+ |T (xc)|+ |T (xr)|.
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First we show that S is orthogonally additive. Notice that

T (xl) = T1(xl) and T (xr) = T2(xr)

for every x ∈ C[0, 1]. Let x, y ∈ C[0, 1] and x ⊥ y. Condition (3) of Proposition 7.4
implies that xc = 0 or yc = 0. Suppose, for certainty, that yc = 0. Now using
Proposition 7.4 and Lemma 7.5 we obtain

S(x + y) = |T (x + y)l|+ |T (x + y)c|+ |T (x + y)r|
= |T1(xl + yl)|+ |T (xc)|+ |T2(xr + yr)|
= |T1(xl)|+ |T1(yl)|+ |T (xc)|+ |T (yc)|+ |T2(xr)|+ |T2(yr)|
= S(x) + S(y).

Now we prove that S = sup{T,−T}. Since

T (x) = T (xl) + T (xc) + T (xr) ≤ |T (xl)|+ |T (xc)|+ |T (xr)| = S(x)

and

−T (x) = −T (xl)− T (xc)− T (xr) ≤ |T (xl)|+ |T (xc)|+ |T (xr)| = S(x)

for every x ∈ C[0, 1], we obtain

T ≤ S and − T ≤ S.

Let R : C[0, 1] → C[0, 1] be an orthogonally additive operator such that

T ≤ R and − T ≤ R.

Notice that |Tx| ≤ Rx for every x ∈ C[0, 1]. Now we have that

S(x) = |T (xl)|+ |T (xc)|+ |T (xr)|
≤ R(xl) + R(xc) + R(xr)

= R(xl + xc + xr) = R(x)

for every x ∈ C[0, 1]. Thus, S = |T |. Moreover, by the above,

(7.1) (∀x ∈ C[0, 1]) |T |(x) = |T (xl)|+ |T (xc)|+ |T (xr)|.
(3) Let xn ∈ C[0, 1] be the piece-wise linear function with nodes at the points

(0, 0),
(

1
4n , 1

)
,
(

1
2 − 1

4n , 1
)
,
(

1
2 , 0

)
,
(

1
2 + 1

4n , 1
)
,
(
1− 1

4n , 1
)

and (1, 0) of R2, that is,

xn(t) =





1, if t ∈ [ 1
4n , 1

2 − 1
4n ] ∪ [ 12 + 1

4n , 1− 1
4n ]

4nt, if t ∈ [0, 1
4n ]

4n

2 − 4nt, if t ∈ [ 12 − 1
4n , 1

2 ]
4nt− 4n

2 , if t ∈ [ 12 , 1
2 + 1

4n ]
4n − 4nt, if t ∈ [1− 1

4n , 1].

Notice that (xn)∞n=1 is strictly increasing and lim
n→∞

xn(t) = 1 for every t ∈ (0, 1
2 ) ∪

( 1
2 , 1). Therefore, (xn)∞n=1 order converges to x0 ≡ 1 in C[0, 1].

On the other hand, (x0)l = (x0)r = 0,

S(x0) = |T (x0)| = 0,

(xn)c = 0 and

S(xn)(t) = |T (xn)l|+ |T (xn)r| =




2, if t ∈ [ 2
4n , 1− 2

4n ]
4nt, if t ∈ [0, 2

4n ]
4n − 4nt, if t ∈ [1− 2

4n , 1].
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for every n ∈ N. Therefore, the sequence (Sxn)∞n=1 order converges to y0 ≡ 2 in
C[0, 1]. Thus, S is not order continuous at x0.

(4) We argue analogously as in (2) and prove that |T |C = sup{TC ,−TC}. For
every x ∈ C[0, 1] one has TC(x) = T (x) ≤ |T |(x) = |T |C(x) and hence TC ≤ |T |C .
Analogously, −TC ≤ |T |C . Let R : C[0, 1] → C be an orthogonally additive
operator such that

TC ≤ R and − TC ≤ R.

Since |TCx| = |Tx| ≤ Rx for every x ∈ C[0, 1], we have that

|T |C(x) = |T (xl)|+ |T (xc)|+ |T (xr)| ≤ R(xl) + R(xc) + R(xr) =

R(xl + xc + xr) = R(x)

for every x ∈ C[0, 1]. Thus, |T |C = |TC |. ¤

Lemma 7.6. Let E, F be Riesz spaces and G be the Dedekind completion of F in
the sense that F is a majorizing order dense Riesz subspace of G.

(1) Any T ∈ O(E, F ) is order bounded if and only if TG ∈ O(E,G) is.
(2) Let (yα)α∈A be a net in F and y ∈ F . Then yα

w−o−→ y in F if and only if
yα

o−→ y in G.

Proof. (1) Obviously, the order boundedness of T implies that of TG, and the
majorizing of F in G easily confirms the converse implication.

(2) is proved in [2, Theorem1.7]. ¤

Proof of Theorem7.1. Set S := TC , where T is defined in item (2) of Theorem 7.2.
The order boundedness of S, as well as the order continuity of S and order discon-
tinuity of |S| follows from Theorem 7.2 and Lemma 7.6. ¤
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