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Abstract
We investigate the problem of existence of a separately continuous function
f : X × Y → R defined on a product of topological spaces X and Y with a given
discontinuity points set of the form A× B. Using an approach based on the clas-
sical Schwartz function we prove the existence of separately continuous function
f : X × Y → R whose discontinuity points set is equal to the product A× B of
nowhere dense functionally closed sets in a quite general case of spaces X and Y .
Moreover, we show that if X = Y = βω, where βω is the Čech–Stone compact-
ification of the countable discrete space ω, and A = B = βω \ω, then there is no
separately continuous function f : X × Y → Rwhose discontinuity points set is equal
to A× B.

Keywords Separately continuous function · Discontinuity points set · Čech–Stone
compactification · Compact space

Mathematics Subject Classification 54C30 · 26B35 · 54C08 · 54D30

1 Introduction

Investigations of the discontinuity points set of separately continuous functions of two
or many variables (i.e. functions that are continuous with respect to each variable)
were started by René Baire [1]. He proved that the discontinuity points set D( f ) of
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any separately continuous function f : [0, 1]2→ R is an Fσ -set which is contained in
the product A× B of meager sets A, B ⊆ [0, 1]. Richard Kershner [6] established a
characterization of the discontinuity points set of separately continuous functions of
real variables. He proved that the necessary conditions obtained by Baire were also
sufficient conditions on the discontinuity points set of such functions.

Further development of investigations of the direct problem and the inverse prob-
lem (necessary and sufficient conditions on the discontinuity points set of separately
continuous functions) was carried out in the following papers: Feiock [5], Brecken-
ridge and Nishiura [2], Calbrix and Troallic [3]. This led to a similar characterization
of the discontinuity points set of separately continuous functions defined on the
product of separable metrizable spaces. To date, the most general results on a com-
plete description of the discontinuity points set of separately continuous functions
f : X1× · · · × Xn → R have been obtained in the following two cases only: if each
space Xk is metrizable [7] and if each space Xk is the product of a family of separable
metrizable spaces [8].

On the other hand, according to the Namioka Theorem [12], the discontinuity
points set D( f ) of any separately continuous function f defined on the product of
two compact spaces X and Y is contained in the product of meager sets. The question
of characterization of the discontinuity points set of separately continuous functions
defined on the product of two compact spaces arises naturally in connection with
Namioka’s result (this question was formulated by Piotrowski [13]). It follows from
[9, Theorem 9] that Kershner’s characterization theorem is not true for separately
continuous functions definedon the product of twoarbitrary compact spaces. Therefore
it is important to study a special inverse problem of construction of a separately
continuous function f : X ×Y → R with a given discontinuity points set of special
rectangular type A× B, where A ⊆ X and B ⊆ Y . This problem was investigated in
[10, 11] where the following results were obtained.

Theorem 1.1 (a) Let X be a topological space, Y be a locally connected space, A
and B be nowhere dense functionally closed sets in X and Y respectively. Then
there exists a separately continuous function f : X ×Y → R whose discontinuity
points set is equal to A× B [10].

(b) Let X and Y be compact spaces, A and B be nowhere dense functionally closed
sets in X and Y respectively. Then there exists a separately continuous function
f : X ×Y → R such that the projections on X and Y of the discontinuity points
set of f are equal to A and B respectively [11, Theorem 2.5].

(c) There exist Eberlein compacts X and Y and nowhere dense functionally closed
sets A and B in X and Y respectively such that D( f ) �= A× B for every separately
continuous function f : X ×Y → R [11, Theorem 3.2].

(d) (CH) There exist separable Valdivia compacts X and Y and nowhere dense func-
tionally closed sets A and B in X and Y respectively such that D( f ) �= A× B for
every separately continuous function f : X ×Y → R [11, Theorem 4.7].

This paper is devoted to investigation of the special inverse problem. First, we
introduce and study the notion of a regular functionally closed set in a topological
space. Using this notion and an approach based on the classical Schwartz function
we prove the existence of separately continuous function f : X ×Y → R whose
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discontinuity points set is equal to the product A× B of nowhere dense functionally
closed sets in a quite general case of spaces X and Y . Moreover, we show that if
X = Y = βω, where βω is the Čech–Stone compactification of the countable discrete
space ω, and A = B = βω\ω, then there is no separately continuous function
f : X ×Y → R whose discontinuity points set is equal to A× B.

2 Regular sets in metrizable spaces

Recall that a set A in a topological space X is called functionally closed, if there exists
a continuous function ϕ : X → [0, 1] such that A = ϕ−1(0).

A topological space X is called locally connected (see [4]), if for every x ∈ X and
any neighbourhood U of x there exists a connected neighbourhood V ⊆ U of x .

We say that a subset A in a topological space X is regular, if there exists a continuous
function ϕ : X → [0, 1] such that

(a) A = ϕ−1(0);
(b) for every point a ∈ A and a neighborhood U of a there exists an integer n ∈ N

such that

ϕ(U ) ∩
[
1

2k
,

1

2k−1

]
�= ∅

for every k � n.

It is clear that every regular set in a topological space X is a nowhere dense functionally
closed set in X . On the other hand, the following proposition is true.

Proposition 2.1 Any nowhere dense functionally closed set A in a locally connected
space X is a regular set in X.

Proof Let ϕ : X → [0, 1] be a continuous function such that A = ϕ−1(0). We fix a
point a ∈ A and a neighborhood U of a in X .

Choose a connected neighborhood V ⊆ U of a in X . Since A is nowhere dense,
V \ A �= ∅ and ϕ(V ) �= {0}. Moreover, the set ϕ(V ) is a connected subset of [0, 1]
as a continuous image of a connected set. Therefore, there exists an ε > 0 such that
[0, ε) ⊆ ϕ(V ). Then

ϕ(V ) ∩
[
1

2k
,

1

2k−1

]
�= ∅

for every k �
[
log2

1
ε

]
. ��

Proposition 2.2 The union of finite family of pairwise disjoint regular subsets of a
topological space is a regular set.

Proof We consider the case of the union of two disjoint regular sets A and B in a
topological space X only.
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Let continuous functions ϕ : X → [0, 1] and ψ : X → [0, 1] satisfy conditions (a)
and (b) from the definition of a regular set for sets A and B respectively. It is enough
to consider the continuous function

χ(x) = min {ϕ(x), ψ(x)}. ��
Question 2.3 Let A and B be regular subsets of a topological space X . Is it true that
A ∩ B and A ∪ B are regular?

We need the following fact which has a simple proof.

Lemma 2.4 Let (tn)∞n=1 be a strictly decreasing sequence of real numbers tn ∈ (0, 1]
such that

lim
n→∞ tn = 0.

Then there exists a strictly increasing continuous function ψ : [0, 1] → [0, 1] such
that ψ(0) = 0 and ψ(tn) = 1/2n for every n ∈ N.

Proposition 2.5 Suppose that a point a ∈ X has a countable base of neighborhoods
in a topological space X and the set A = {a} is a nowhere dense functionally closed
set in X. Then A is regular.

Proof Let ϕ : X → [0, 1] be a continuous function such that

A = ϕ−1(0).

Since A is nowhere dense and a has a countable base of neighborhoods, there exists
a sequence (xn)∞n=1 of points xn ∈ X such that xn → a in X and the sequence
(ϕ(xn))∞n=1 converges to zero while strictly decreasing. For every n ∈ N we put
tn = ϕ(xn). According to Lemma 2.4, we choose a strictly increasing continuous
function g : [0, 1] → [0, 1] such that g(0) = 0 and g(tn) = 1/2n for every n ∈ N. It
remains to consider a continuous function ϕ : X → [0, 1],

ψ(x) = g(ϕ(x)). ��
Let us get down to studying regular sets in metrizable spaces.

In a metric space (X , d) by B(x, r) we denote an open ball with the center x ∈ X
and radius r > 0.

We start from the following auxiliary statements.

Lemma 2.6 Let (X , d) be a metric space, δ > 0, A ⊆ X be a closed nowhere dense
set and G ⊆ X be an open set such that A ⊆ G. Then there exists an open set H ⊆ X
such that

A ⊆ H ⊆ H ⊆ G
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and

B(a, δ) ∩ (G \H) �= ∅

for every a ∈ A.

Proof For every a ∈ A let us choose a real number δa < δ/2 such that B(a, δa) ⊆ G.
According to the Stone Theorem [4, Theorem 4.4.1], there exists a locally finite in X
open cover U of A which is inscribed in the open cover {B(a, δa) : a ∈ A} of A. For
every U ∈ U we choose a point bU ∈ U \ A and consider the set

B = {bU :U ∈ U}.

Since the system U is locally finite, the set B is closed. Moreover, B ⊆ G \ A, in
particular, B ∩ A = ∅. Since X is a normal space, there exists an open set H such
that

A ⊆ H ⊆ H ⊆ G \ B.

It remains to show that B(a, δ) ∩ (G \H) �= ∅ for every a ∈ A. Fix a point
a ∈ A and choose U ∈ U such that a ∈ U . Then there exists a1 ∈ A such that
U ⊆ B(a1, δa1). Then we have

d(a, bU ) � d(a, a1) + d(a1, bU ) � δa1+ δa1 � δ

2
+ δ

2
= δ.

Thus, bU ∈ B ∩ B(a, δ). ��
Lemma 2.7 Let (Gn)

∞
n=1 be a sequence of open nonempty sets Gn in a normal space

X such that

Gn+1 ⊆ Gn

for every n ∈ N. Then there exists a continuous function ϕ : X → [0, 1) such that

1

2n
� ϕ(x) � 1

2n−1

for every n ∈ N and x ∈ Gn\Gn+1, and

A =
∞⋂
n=1

Gn = ϕ−1(0).

Proof According to the Urysohn Lemma [4, Theorem 1.5.11], for every n ∈ N there
exists a continuous function ϕn : X → [0, 1/2n] such that

Gn+1 ⊆ ϕ−1
n (0) and X \Gn ⊆ ϕ−1

n

(
1

2n

)
.
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We consider the function ϕ : X → [0, 1],

ϕ(x) =
∞∑
n=1

ϕn(x).

Clearly, ϕ is a continuous function. Let n ∈ N and x ∈ Gn\Gn+1. Then ϕk(x) = 0
for every k ∈ {1, . . . , n − 1} and ϕk(x) = 1/2k for every k � n + 1. Thus, we have

ϕ(x) =
∞∑
k=1

ϕk(x) = ϕn(x) +
∞∑

k=n+1

1

2k
= ϕn(x) + 1

2n
.

Since ϕn(x) ∈ [0, 1/2n],
1

2n
� ϕ(x) � 1

2n−1 .

��
The following proposition is the main proposition of this section.

Proposition 2.8 Every closed nowhere dense set A in a metrizable space X is regular.

Proof Let us fix a metric d on X which generates the topology of X . It follows from
Lemma 2.6 that there exists a sequence (Gn)

∞
n=1 of open sets Gn in X which satisfies

the following conditions:

(α) A ⊆ Gn+1 ⊆ Gn+1 ⊆ Gn for every n ∈ N;
(β) B(a, 1/n) ∩ (Gn\Gn+1) �= ∅ for every n ∈ N and a ∈ A.

According to Lemma 2.7, there exists a continuous function ϕ : X → [0, 1] such that
A = ϕ−1(0) and

1

2n
� ϕ(x) � 1

2n−1

for every n ∈ N and x ∈ Gn\Gn+1.
Let us verify condition (b) from the definition of a regular set. Fix an element a ∈ A

and a real number δ > 0 and choose an integer m such that 1/m � δ. Then

B

(
a,

1

k

)
⊆ B

(
a,

1

m

)
⊆ B(a, δ) = U

for every k � m. According to (β), we have

B

(
a,

1

k

)
∩ (Gk \Gn+1) �= ∅.

It follows from the properties of the function ϕ that

ϕ(Gk \Gn+1) ⊆
[
1

2k
,

1

2k−1

]
.
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Thus,

ϕ(U ) ∩
[
1

2k
,

1

2k−1

]
�= ∅

for every k � n. ��

3 Separable regular sets

We start with the following auxiliary statement.

Lemma 3.1 Let (tnk : n ∈ N, k ∈ N) be a family of real numbers tnk ∈ (0, 1] such that
limk→∞ tnk = 0 for every n ∈ N. Then there exists a strictly decreasing sequence
(tn)∞n=1 of real numbers tn ∈ (0, 1] such that

(α) limn→∞ tn = 0;
(β) for all n ∈ N and m � n there exists k ∈ N such that

tn+1 < tmk � tn .

Proof Let us construct the sequence (tn)∞n=1 inductively. First, we put t1 = 1 and
choose t2 ∈ (0, t1/2] such that

{t1k : k ∈ N} ∩ (t2, t1] �= ∅.

Further, since tnk > 0 and limk→∞ t1k = limk→∞ t2k = 0, there exists t3 ∈ (0, t2/2]
such that

{tmk : k ∈ N} ∩ (t3, t2] �= ∅

for every m = 1, 2. And so on.
It is clear that the sequence (tn)∞n=1 satisfies condition (β). Moreover, tn+1 � t1/2n

for every n ∈ N. Therefore, condition (α) is also true. ��
We need the following notion. We say that a set A in a topological space X is

bilaterally separable if there exist a sequence (an)∞n=1 of points an ∈ A and a family
(xnk : n ∈ N, k ∈ N) of points xnk ∈ X \ A such that

• A ⊆ {an : n ∈ N};
• limk→∞ xnk = an for every k ∈ N.

Clearly, every nowhere dense separable set in a first countable topological space is
bilaterally separable.

The following property of bilaterally separable functionally closed sets plays an
important role in our further construction.

Proposition 3.2 Let X be a topological space and A ⊆ X be a functionally closed
bilaterally separable set. Then A is regular.
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Proof Let ϕ1 : X → [0, 1] be a continuous function such that A = ϕ−1
1 (0), (an)∞n=1 be

a sequence of points an ∈ A and (xnk : n ∈ N, k ∈ N) be a family of points xnk ∈ X \ A
such that A ⊆ {an : n ∈ N} and limk→∞ xnk = an for every k ∈ N.

For all n, k ∈ N we put

tnk = ϕ1(xnk).

Notice that

lim
k→∞ tnk = lim

k→∞ ϕ1(xnk) = ϕ1(an) = 0

for every n ∈ N, that is the family (tnk : n ∈ N, k ∈ N) satisfies the conditions of
Lemma 3.1. Therefore, there exists a strictly decreasing null sequence (tn)∞n=1 of real
numbers tn ∈ (0, 1] such that for all n ∈ N and m � n there exists k ∈ N with

tn+1 < tmk � tn .

According to Lemma 2.4, there exists a strictly increasing continuous function
ψ : [0, 1] → [0, 1] such that ψ(0) = 0 and ψ(tn) = 1/2n for every n ∈ N.

Consider a continuous function ϕ : X → [0, 1]

ϕ(x) = ψ(ϕ1(x)).

Notice that

ϕ−1(0) = ϕ−1
1 (ψ−1(0)) = ϕ−1

1 (0) = A.

Let us verify condition (b) from the definition of regular set. Choose an arbitrary
point a ∈ A and an open neighborhood U of a. Since the set {an : n ∈ N} is dense in
A, there is an integer n1 ∈ N such that an1 ∈ U . Moreover,

lim
k→∞ xn1,k = an1 .

Therefore, there is an integer k0 ∈ N such that xn1,k ∈ U for every k � k0. According
to the choice of the sequence (tn)∞n=1, for every n � n1 there exists kn ∈ N such that

tn+1 < tn1,kn � tn .

It is clear that all integers kn are distinct. Therefore, there exists n0 � n1 such that
kn � k0 for all n � n0. Then xn1,kn ∈ U for every n � n0 and

1

2n+1 = ψ(tn+1) < ψ(tn1,kn ) = ϕ(xn1,kn ) � ψ(tn) = 1

2n
,
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that is,

xn1,kn ∈ ψ(U ) ∩
(

1

2n+1 ,
1

2n

]
. ��

4 Construction of separately continuous functions with a given
rectangular set of points of discontinuity

Let X be a topological space, A ⊆ X be a nonempty set, x0 ∈ X , U be the system of
all neighborhoods of x0 in X and f : X → R. The real number

ω f (A) = sup
x ′,x ′′∈A

| f (x ′) − f (x ′′)|

is called the oscillation of the function f on the set A, and the real number

ω f (x0) = inf
U∈U

ω f (U )

is called the oscillation of the function f at the point x0.
For a mapping f between topological spaces the discontinuity points set of f we

denote by D( f ).
The following theoremgives a solution to the special inverse problem for the product

A× B where A is regular.

Theorem 4.1 Let X ,Y be topological spaces, A ⊆ X be a regular set in X and
B ⊆ Y be a nowhere dense functionally closed set in Y . Then there exists a lower
semi-continuous separately continuous function f : X ×Y → [0, 1] such that D( f ) =
A× B.

Proof Let ϕ : X → [0, 1] be a continuous function which satisfies conditions (a) and
(b) from the definition of regular set. Moreover, let ψ : Y → [0, 1] be a continuous
function such that B = ψ−1(0). Consider a continuous function

f (x, y) =
{

2ϕ(x)ψ(y)
ϕ2(x)+ψ2(y)

, (x, y) /∈ A× B,

0, (x, y) ∈ A× B.

Since the Schwartz function

g(s, t) =
{

2st
s2+t2

, (s, t) �= (0, 0),

0, (s, t) = (0, 0),

is continuous at every point (s, t) �= (0, 0), the function f is continuous at every point
(x, y) /∈ A× B. Moreover,

ϕ(x, y) = 0 = min { f (z) : z ∈ X ×Y }
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for every (x, y) ∈ A× B. Consequently, f is lower semi-continuous at every point
(x, y) ∈ A× B. Therefore, f is lower semi-continuous.

It remains to show that f is discontinuous at every point (x, y) ∈ A× B. Fix any
point (x0, y0) ∈ A× B and arbitrary open neighborhoods U of x0 in X and V of y0
in Y . According to condition (b), choose an integer n ∈ N such that

ϕ(U ) ∩
[
1

2k
,

1

2k−1

]
�= ∅

for all k � n. Consider the open neighborhood

V0 = V ∩ ψ−1
([

0,
1

2n−1

))

of y0 in Y . Since the set B is nowhere dense, V0\ B �= ∅. Thus, there exists a point
y1 ∈ V0\ B. Clearly, ψ(y1) ∈ (0, 1/2n−1). Choose k � n such that

1

2k
� ψ(y1) � 1

2k−1 .

According to the choice of n, there exists x1 ∈ U such that

1

2k
� ϕ(x1) � 1

2k−1 .

Then

f (x1, y1) = 2ϕ(x1)ψ(y1)

ϕ2(x1) + ψ2(y1)
�

2 1
2k

1
2k( 1

2k−1

)2 + ( 1
2k−1

)2 = 1

4
.

Therefore,

ω f (U ×V ) � f (x1, y1) − f (x0, y0) � 1

4

and

ω f (x0, y0) � 1

4
. ��

The following result follows immediately from Theorem 4.1, Propositions 2.8 and
5.4.

Corollary 4.2 Let X ,Y be topological spaces, A ⊆ X , B ⊆ Y be nowhere dense
functionally closed sets and one of the following conditions holds:

(i) X is locally connected;
(ii) X is metrizable;
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(iii) A is bilaterally separable in X;
(iv) X is a first countable space and A is separable.

Then there exists a lower semi-continuous separately continuous function f : X ×Y →
[0, 1] with D( f ) = A× B.

Remark 4.3 It follows from [11, Theorem 2.1] the existence of a lower semi-conti-
nuous separately continuous function f : X ×Y → [0, 1] with D( f ) = A× B in the
case of nowhere dense functionally closed sets A and B in completely regular spaces
X and Y such that A× B = {pn : n ∈ N} and that every point pn has a countable base
(more generally, has the weak Preiss–Simon property) in X ×Y . But [11, Theorem
2.1] does not imply Corollary 4.2(iv) because we cannot use this theorem in the case
of non-separable set B.

5 The special inverse problem onˇ!×ˇ!

In this section we consider the special inverse problem on the product βω×βω, where
βω is the Čech–Stone compactification of the countable discrete space

ω = {0, 1, 2, . . . }.

Notice that the setω∗ = βω\ω is a nowhere dense functionally closed set in a separable
space βω.

Proposition 5.1 The set ω∗ is not regular in the space βω.

Proof Let ϕ : βω → [0, 1] be a continuous function such that ω∗ = ϕ−1(0). We set

A = ϕ−1
( ∞⋃

n=1

(
1

24n−2 ,
1

24n−4

])
, B = ϕ−1

( ∞⋃
n=1

(
1

24n
,

1

24n−2

])
,

U = A and V = B. Clearly, ω = A � B. According to [4, Corollary 3.6.4], βω =
U � V . Therefore, U and V are open in βω. Moreover,

ϕ(U ) ∩
[

1

24n−1 ,
1

24n−2

]
= ∅ and ϕ(V ) ∩

[
1

24n−3 ,
1

24n−4

]
= ∅

for every n ∈ N. Thus, ω∗ is not regular in βω. ��
The question of existence of a separately continuous function f : βω×βω → R

with D( f ) = ω∗×ω∗ naturally arises in connectionwith Theorem4.1 and Proposition
5.1. We show that the answer to this question is negative.

We need the following auxiliary statements which have trivial proofs.

Lemma 5.2 Let X be a topological space, f : X → R, G ⊆ X be an open nonempty
set, g = f |G and x ∈ G. Then ωg(x) = ω f (x).

123



Separately continuous functions... S341

Lemma 5.3 Let X ,Y be topological spaces, ϕ : Y → X be homeomorphism, f : X →
R and g : Y → R, g(y) = f (ϕ(y)). Then ωg(y) = ω f (ϕ(y)) for all y ∈ Y .

For any nonempty set A ⊆ ω the closure U = A of the set A in the space βω is
called a basic set in βω. It is well-known [4, Theorem 3.6.13] that all basic sets are
clopen in βω and form a base of the topology of the space βω.

The following proposition give us a possibility to consider mappings with “big”
oscillations and almost zero values on ω∗×ω∗.

Proposition 5.4 The following conditions are equivalent:

(a) there exists a separately continuous function f : βω×βω → [0, 1] with
D( f ) = ω∗×ω∗;

(b) there exists a separately continuous function g : βω×βω → [0, 1] such that
D(g) = ω∗×ω∗, g(ω∗×ω∗) ⊆ (0, 1/4] and ωg(x, y) � 1/2 for every point
(x, y) ∈ ω∗×ω∗.

Proof It is clear that (b) ⇒ (a). Therefore, it remains to prove the implication (a) ⇒
(b) only.

Let f : βω×βω → [0, 1] be a separately continuous function with D( f ) =
ω∗×ω∗. For every n ∈ N we put

Fn =
{
(x, y) ∈ (βω)2 : ω f (x, y) � 1

n

}
.

Since all sets Fn are closed, the space ω∗×ω∗ is Baire and

∞⋃
n=1

Fn = D( f ) = ω∗×ω∗,

there exist an integer n0 ∈ N and infinite basic clopen setsU0 and V0 in βω such that

ω f (x, y) � 1

n0

for every (x, y) ∈ (ω∗ ∩U0)×(ω∗ ∩V0). According to [4, Corollary 3.6.8], there exist
homeomorphisms ϕ : U0 → βω and ψ : V0 → βω, in particular ϕ(U0 ∩ ω∗) = ω∗
and ψ(V0 ∩ ω∗) = ω∗.

We consider the mapping f1 : βω×βω → [0, 1],

f1(x, y) = f (ϕ−1(x), ψ−1(y)).

It follows fromLemmas 5.2 and 5.3 that f1 is separately continuous, D( f1) = ω∗×ω∗
and ω f1(x, y) � 1/n0 for every (x, y) ∈ ω∗×ω∗.

Now we consider the restriction h = f1|ω∗×ω∗ of f1 on the product ω∗×ω∗. It is
clear that h is a separately continuous function which has a continuity point according
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to Namioka’s Theorem [12]. Therefore, there exist infinite clopen basic setsU1 ⊆ βω

and V1 ⊆ βω such that

ωh((U1 ∩ ω∗)×(V1 ∩ ω∗)) � 1

2n0
.

For a separately continuous mapping f2 : βω×βω → [0, 1],

f2(x, y) = f1(ϕ
−1
1 (x), ψ−1

1 (y)),

where ϕ1 : U1 → βω and ψ1 : V1 → βω are some homeomorphisms, we have

D( f2) = ω∗×ω∗, ω f2(x, y) � 1

n0

for every (x, y) ∈ ω∗×ω∗ and

f2(ω
∗×ω∗) ⊆

[
α, α + 1

2n0

]
,

where α = inf h((U1 ∩ ω∗)×(V1 ∩ ω∗)).
It remains to put

g(x, y) = min

{
1,

n0
2

( f2(x, y) − α)

}

for every (x, y) ∈ βω×βω. ��
Let us get down to studying separately continuous functions that have almost zero

values on ω∗×ω∗.

Proposition 5.5 Let A, B ⊆ ω be infinite sets and f : βω×βω → [0, 1] be a sepa-
rately continuous function such that

f (ω∗ ×ω∗) ⊆
[
0,

1

4

]
.

Then there exists n ∈ A such that the set

Bn =
{
m ∈ B : f (n,m) � 1

3

}

is infinite.

Proof Assume that for every n ∈ A the set Bn is finite. Pick any point y0 ∈ B \ B ⊆ ω∗.
Then

B \ Bn = B \ Bn ⊇ B \ B � y0
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for every n ∈ A. Since for every n ∈ A we have

B \ Bn =
{
m ∈ B : f (n,m) >

1

3

}

and the function f n : βω → [0, 1], f n(m) = f (n,m), is continuous,

f (n, y0) = f n(y0) ∈ f n(B \ Bn) ⊆ f n(B \ Bn) ⊆
[
1

3
, 1

]
.

Thus,

f (n, y0) � 1

3

for every n ∈ A. Taking into account the continuity of the function fy0 : βω → [0, 1],
fy0(x) = f (x, y0), we obtain

f (x0, y0) � 1

3

for every x0 ∈ A\ A ⊆ ω∗, a contradiction. ��
Proposition 5.6 Let f : βω×βω → [0, 1] be a separately continuous function with
f (ω∗×ω∗) ⊆ [0, 1/4]. Then there exist infinite sets A, B ⊆ ω such that f (A× B) ⊆
[0, 1/3].
Proof We put A1 = B1 = ω. According to Proposition 5.5 there exists n1 ∈ A1 such
that the set

B2 =
{
m ∈ B1 : f (n1,m) � 1

3

}

is infinite. Using Proposition 5.5 for sets Ã1 = A1 ∩ (n1,+∞) and B2 we obtain that
there exists an integer m1 ∈ B2 such that the set

A2 =
{
n ∈ Ã1 : f (n,m1) � 1

3

}

is infinite. Now we use Proposition 5.5 for sets A2 and B̃2 = B2 ∩ (m1,+∞) and
obtain the existence of an integer n2 ∈ A2 such that the set

B3 =
{
m ∈ B̃2 : f (n2,m) � 1

3

}

is infinite. And so on.
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As a result, we obtain strictly increasing sequences (nk)∞k=1 and (mk)
∞
k=1 such that

f (nk,ml) � 1

3

for every k, l ∈ ω. It remains to put

A = {nk : k ∈ ω} and B = {mk : k ∈ ω}. ��

The following theorem is the main result of this section.

Theorem 5.7 There is no separately continuous function f : βω×βω → [0, 1] with
D( f ) = ω∗×ω∗.

Proof Assume that there exists a separately continuous function f : βω×βω → [0, 1]
with D( f ) = ω∗×ω∗. Then according to Proposition 5.4 there exists a separately
continuous function g : βω×βω → [0, 1] such that g(ω∗×ω∗) ⊆ [0, 1/4], D(g) =
ω∗ ×ω∗ and ωg(x, y) � 1/2 for every (x, y) ∈ ω∗×ω∗.

It follows from Proposition 5.6 that there exist infinite sets A, B ⊆ ω such that
g(A× B) ⊆ [0, 1/3]. Since g is separately continuous,

g(A× B) ⊆
[
0,

1

3

]
.

Now for any points x0 ∈ A\ A ⊆ ω∗ and y0 ∈ B \ B ⊆ ω∗ the set A× B is a
neighborhood of (x0, y0) in βω×βω and

ωg(x0, y0) � ωg(A× B) � 1

3
,

a contradiction. ��
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