BIFURCATION OF CYCLES IN PARABOLIC SYSTEMS WITH WEAK DIFFUSION

IVAN KLEVCHUK, MYKOLA HRYTCHUK

The existence of countably many cycles in hyperbolic systems of differential equations with transformed argument were considered in [6]. The existence and stability of an arbitrarily large finite number of cycles for the equation of spin combustion with delay were considered in [7]. We study the existence and stability of an arbitrarily large finite number of cycles for a parabolic system with delay and weak diffusion. Similar problems for partial differential equations were studied in numerous works (see, e.g., $[1 - 7]$).

1. Traveling waves for parabolic equations with weak diffusion. Consider a system

$$
\frac{\partial u_1}{\partial t} = \varepsilon \gamma \frac{\partial^2 u_1}{\partial x^2} - \varepsilon \delta \frac{\partial^2 u_2}{\partial x^2} - \omega_0 u_2 + \varepsilon (\alpha u_1 - \beta u_2) + (d_0 u_1 - c_0 u_2)(u_1^2 + u_2^2),
$$

$$
\frac{\partial u_2}{\partial t} = \varepsilon \gamma \frac{\partial^2 u_2}{\partial x^2} + \varepsilon \delta \frac{\partial^2 u_1}{\partial x^2} + \omega_0 u_1 + \varepsilon (\alpha u_2 + \beta u_1) + (d_0 u_2 + c_0 u_1)(u_1^2 + u_2^2)
$$
 (1)

with periodic condition

$$
u_1(t, x + 2\pi) = u_1(t, x), \quad u_2(t, x + 2\pi) = u_2(t, x), \tag{2}
$$

where ε is a small positive parameter, $\omega_0 > 0$, $\alpha > 0$, $\gamma > 0$, $d_0 < 0$.

Passing to the complex variables $u = u_1 + iu_2$ and $\bar{u} = u_1 - iu_2$, we arrive at the equation

$$
\frac{\partial u}{\partial t} = i\omega_0 u + \varepsilon \left[(\gamma + i\delta) \frac{\partial^2 u}{\partial x^2} + (\alpha + i\beta) u \right] + (d_0 + ic_0) u^2 \overline{u}.\tag{3}
$$

In the present paper, we investigate the existence and stability of the wave solutions of problem (1) , (2) . The solution of equation (3) is sought in the form of traveling wave $u = \theta(y)$, $y = \sigma t + x$, where the function $\theta(y)$ is periodic with period 2*π.* We arrive at the equation

$$
\sigma \frac{d\theta}{dy} = i\omega_0 \theta + \varepsilon \left[(\gamma + i\delta) \frac{d^2 \theta}{dy^2} + (\alpha + i\beta) \theta \right] + (d_0 + ic_0) \theta^2 \overline{\theta}.
$$

By the change of variables $\frac{d\theta}{dy} = \theta_1$, this equation is reduced to the following system:

$$
\frac{d\theta}{dy} = \theta_1, \quad \sigma\theta_1 = i\omega_0\theta + \varepsilon \left[(\gamma + i\delta) \frac{d\theta_1}{dy} + (\alpha + i\beta)\theta \right] + (d_0 + ic_0)\theta^2 \overline{\theta}.\tag{4}
$$

The integral manifold of system (4) can be represented in the form

$$
\theta_1 = \frac{i\omega_0}{\sigma}\theta + \varepsilon \left[\frac{\alpha + i\beta}{\sigma}\theta - \frac{\omega_0^2}{\sigma^3}(\gamma + i\delta)\theta\right] + \frac{d_0 + ic_0}{\sigma}\theta^2\bar{\theta} + \dots
$$

Here, we keep the terms of order $O(\varepsilon)$ in the linear terms and the terms of order $O(1)$ in the nonlinear terms. The equation on this manifold takes the form

$$
\frac{d\theta}{dy} = \frac{i\omega_0}{\sigma}\theta + \varepsilon \left[\frac{\alpha + i\beta}{\sigma}\theta - \frac{\omega_0^2}{\sigma^3}(\gamma + i\delta)\theta \right] + \frac{d_0 + ic_0}{\sigma}\theta^2\bar{\theta} + \dots \tag{5}
$$

Passing to the polar coordinates $\theta = r \exp(i\varphi)$ in Eq. (5), we get

$$
\frac{dr}{dy} = \varepsilon \left(\frac{\alpha}{\sigma} - \frac{\gamma}{\sigma^3} \omega_0^2\right) r + \frac{d_0}{\sigma} r^3. \tag{6}
$$

Let $d_0 < 0$ and let the inequality $\alpha > \frac{\gamma}{\gamma}$ $\frac{1}{\sigma^2} \omega_0^2$ be true. Then Eq. (6) possesses the stationary solution

$$
r = \sqrt{\varepsilon} R_0
$$
, $R_0 = \sqrt{\left(\alpha - \frac{\gamma}{\sigma^2} \omega_0^2\right) |d_0|^{-1}}$,

hence, the periodic solution of Eq. (5) takes the form $\theta = \sqrt{\varepsilon}R_0 \exp\left(\frac{i\omega_0}{R_0}\right)$ $\frac{d^2y}{dx^2}$ \setminus $+O(\varepsilon)$. Since the function θ is periodic with period 2π , we get $\sigma = \frac{\omega_0}{\sqrt{2\pi}}$ $\frac{\varepsilon_0}{n}$ + $O(\varepsilon)$, $n =$ $\pm 1, \pm 2, \ldots$ Thus, the periodic solution of Eq. (3) takes the form

$$
u_n = u_n(t, x) = \sqrt{\varepsilon} r_n \exp(i(\chi_n(\varepsilon)t + nx)) + O(\varepsilon), \tag{7}
$$

where $r_n = \sqrt{(\alpha - n^2 \gamma) |d_0|^{-1}}, \chi_n(\varepsilon) = \omega_0 + \varepsilon \beta + \varepsilon c_0 r_n^2 - \varepsilon \delta n^2, n \in \mathbb{Z}$. Thus, the periodic solution of problem (1), (2) takes the form

$$
u_1 = \sqrt{\varepsilon}r_n \cos(\chi_n(\varepsilon)t + nx), \quad u_2 = \sqrt{\varepsilon}r_n \sin(\chi_n(\varepsilon)t + nx), \quad n \in \mathbb{Z}.
$$
 (8)

The following statement is true:

Theorem 1. *Let* $\omega_0 > 0$, $\alpha > 0$, $\gamma > 0$, $d_0 < 0$ *and let the inequality* $\alpha > \gamma n^2$ *be true for some integer n.* Then there exists $\varepsilon_0 > 0$ *such that, for* $0 < \varepsilon < \varepsilon_0$ *, problem (1), (2) has solutions (8) periodic in t.*

2. Stability of periodic solutions. The equation in variations in the vicinity of the solution (7) of equation (3) takes the form

$$
\frac{\partial v}{\partial t} = i\omega_0 v + \varepsilon \left[(\gamma + i\delta) \frac{\partial^2 v}{\partial x^2} + (\alpha + i\beta)v \right] + \varepsilon (d_0 + ic_0) (2r_n^2 v + w_n^2 \bar{v}), \tag{9}
$$

where $w_n = r_n \exp(i(\chi_n(\varepsilon)t + nx))$, $\chi_n(\varepsilon) = \omega_0 + \varepsilon \beta + \varepsilon c_0 r_n^2 - \varepsilon \delta n^2$. By the change of variables $v = w \exp(i\chi_n(\varepsilon)t)$ in Eq. (9), we find

$$
\frac{\partial w}{\partial t} = \varepsilon \left[(\gamma + i\delta) \frac{\partial^2 w}{\partial x^2} + \eta_n w + (d_0 + ic_0) r_n^2 (w + \overline{w} \exp(2inx)) \right],\tag{10}
$$

where $\eta_n = \alpha + i\delta n^2 + d_0 r_n^2$.

We seek the solution of Eq. (10) in the form of Fourier series in the complex form

$$
w(t,x) = \sum_{k=-\infty}^{\infty} y_k(t) \exp(ikx), \quad \overline{w}(t,x) = \sum_{k=-\infty}^{\infty} v_k(t) \exp(ikx).
$$
 (11)

Substituting (11) in (10) and equating the coefficients of $\exp(ikx)$, we obtain the equations for the coefficients of the Fourier series

$$
\frac{dy_{k+n}}{dt} = \varepsilon [\eta_n y_{k+n} - (\gamma + i\delta)(k+n)^2 y_{k+n} + (d_0 + ic_0) r_n^2 (y_{k+n} + v_{k-n})].
$$
 (12)

Similarly, substituting (11) in the equation adjoint to (10), we get

$$
\frac{dv_{k-n}}{dt} = \varepsilon [\overline{\eta}_n v_{k-n} - (\gamma - i\delta)(k-n)^2 v_{k-n} + (d_0 - i c_0) r_n^2 (v_{k-n} + y_{k+n})].
$$
 (13)

The stability of the wave solutions of problem (1) , (2) is determined by the stability of system (12), (13) with a parameter $k \in \mathbb{Z}$. By the change of variables $y_{k+n} = z_{k+n} \exp(-2i\varepsilon \delta k n), v_{k-n} = w_{k-n} \exp(-2i\varepsilon \delta k n)$ in system (12), (13), we get a linear system with the matrix

$$
\varepsilon A = \begin{pmatrix} \varepsilon a_{11} & \varepsilon a_{12} \\ \varepsilon a_{21} & \varepsilon a_{22} \end{pmatrix}.
$$

The matrix *A* has an eigenvalue equal to zero for $k = 0$. Since the sum of diagonal elements of the matrix *A* is negative, $a = a_{11} + a_{22} < 0$, for the orbital exponential stability of the periodic solution $u_n(t, x)$, it is necessary and sufficient that the condition $a^2c > f^2$, where $c = Re(det(A)), f = Im(det(A)), f = 4\gamma kn(c_0r_n^2 - \delta k^2)$, be satisfied for $k \neq 0$, i.e.

$$
(d_0r_n^2 - \gamma k^2)^2(\gamma^2 k^2 + \delta^2 k^2 - 2\gamma d_0r_n^2 - 4\gamma^2 n^2 - 2\delta c_0r_n^2) > 4\gamma^2 n^2 (c_0r_n^2 - \delta k^2)^2, \tag{14}
$$

where $r_n^2 = (\gamma n^2 - \alpha)/d_0$.

Theorem 2. The traveling waves $u_n(t, x)$ of problem (1), (2) are exponentially *orbitally stable if and only if condition (14) is satisfied for all* $k \in \mathbb{Z}\backslash\{0\}$ *.*

As an example, we consider a system (1), where $\delta = 0$, $c_0 = 0$. Hence, Theorem 1 implies that the periodic solution

$$
u_n = \sqrt{\varepsilon(\alpha - \gamma n^2)|d_0|^{-1}} \begin{pmatrix} \cos(\omega_0 t + nx) \\ \sin(\omega_0 t + nx) \end{pmatrix}
$$

exists for $d_0 < 0$ and $\gamma n^2 < \alpha$. By Theorem 2, the traveling waves $u_n(t, x)$ are exponentially orbitally stable if and only if $n^2 < \frac{1}{c}$ $\frac{1}{6\gamma}(\gamma+2\alpha).$

REFERENCES

- [1] V.I. Fodchuk, I.I. Klevchuk, *Integral sets and the reduction principle for differentialfunctional equations*, Ukrainian Math. J. **34**(3) (1982), 272–277
- [2] I.I. Klevchuk, V.I. Fodchuk, *Bifurcation of singular points of differential-functional equations*, Ukrainian Math. J. **38**(3) (1986), 281–286
- [3] I.I. Klevchuk, *On the reduction principle for functional-differential equations of the neutral type*, Differ. Equ. **35**(4) (1999), 464–473
- [4] I.I. Klevchuk, *Bifurcation of the state of equilibrium in the system of nonlinear parabolic equations with transformed argument*, Ukrainian Math. J. **51**(10) (1999), 1512–1524
- [5] I.I. Klevchuk, *Homoclinic points for a singularly perturbed system of differential equations with delay*, Ukrainian Math. J. **54**(4) (2002), 693–699
- [6] I.I. Klevchuk, *Existence of countably many cycles in hyperbolic systems of differential equations with transformed argument*, J. Math. Sci. **215**(3) (2016), 341–349
- [7] I.I. Klevchuk, *Bifurcation of self-excited vibrations for parabolic systems with retarded argument and weak diffusion*, J. Math. Sci. **226**(3) (2017), 285–295

Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Kotsyubynskyi str. 2, Ukraine

E-mail address: i.klevchuk@chnu.edu.ua