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The existence of countably many cycles in hyperbolic systems of differential
equations with transformed argument were considered in [6]. The existence and
stability of an arbitrarily large finite number of cycles for the equation of spin
combustion with delay were considered in [7]. We study the existence and stability
of an arbitrarily large finite number of cycles for a parabolic system with delay and
weak diffusion. Similar problems for partial differential equations were studied in
numerous works (see, e.g., [1 – 7]).

1. Traveling waves for parabolic equations with weak diffusion. Con-
sider a system

∂u1

∂t
= εγ

∂2u1

∂x2
− εδ

∂2u2

∂x2
− ω0u2 + ε(αu1 − βu2) + (d0u1 − c0u2)(u

2
1 + u2

2),

∂u2

∂t
= εγ

∂2u2

∂x2
+ εδ

∂2u1

∂x2
+ ω0u1 + ε(αu2 + βu1) + (d0u2 + c0u1)(u

2
1 + u2

2) (1)

with periodic condition

u1(t, x+ 2π) = u1(t, x), u2(t, x+ 2π) = u2(t, x), (2)

where ε is a small positive parameter, ω0 > 0, α > 0, γ > 0, d0 < 0.
Passing to the complex variables u = u1+ iu2 and ū = u1− iu2, we arrive at the

equation

∂u

∂t
= iω0u+ ε

[
(γ + iδ)

∂2u

∂x2
+ (α+ iβ)u

]
+ (d0 + ic0)u

2u. (3)

In the present paper, we investigate the existence and stability of the wave
solutions of problem (1), (2). The solution of equation (3) is sought in the form of
traveling wave u = θ(y), y = σt+x, where the function θ(y) is periodic with period
2π. We arrive at the equation

σ
dθ

dy
= iω0θ + ε

[
(γ + iδ)

d2θ

dy2
+ (α+ iβ)θ

]
+ (d0 + ic0)θ

2θ.

By the change of variables
dθ

dy
= θ1, this equation is reduced to the following system:

dθ

dy
= θ1, σθ1 = iω0θ + ε

[
(γ + iδ)

dθ1
dy

+ (α+ iβ)θ

]
+ (d0 + ic0)θ

2θ. (4)

The integral manifold of system (4) can be represented in the form

θ1 =
iω0

σ
θ + ε

[
α+ iβ

σ
θ − ω2

0

σ3
(γ + iδ)θ

]
+

d0 + ic0
σ

θ2θ̄ + . . . .

Here, we keep the terms of order O(ε) in the linear terms and the terms of order
O(1) in the nonlinear terms. The equation on this manifold takes the form

dθ

dy
=

iω0

σ
θ + ε

[
α+ iβ

σ
θ − ω2

0

σ3
(γ + iδ)θ

]
+

d0 + ic0
σ

θ2θ̄ + . . . . (5)

1



Passing to the polar coordinates θ = r exp(iφ) in Eq. (5), we get

dr

dy
= ε

(α
σ
− γ

σ3
ω2
0

)
r +

d0
σ
r3. (6)

Let d0 < 0 and let the inequality α >
γ

σ2
ω2
0 be true. Then Eq. (6) possesses the

stationary solution

r =
√
εR0, R0 =

√(
α− γ

σ2
ω2
0

)
|d0|−1,

hence, the periodic solution of Eq. (5) takes the form θ =
√
εR0 exp

(
iω0

σ
y

)
+O(ε).

Since the function θ is periodic with period 2π, we get σ =
ω0

n
+ O(ε), n =

±1,±2, . . .. Thus, the periodic solution of Eq. (3) takes the form

un = un(t, x) =
√
εrn exp(i(χn(ε)t+ nx)) +O(ε), (7)

where rn =
√
(α− n2γ) |d0|−1, χn(ε) = ω0 + εβ + εc0r

2
n − εδn2, n ∈ Z. Thus, the

periodic solution of problem (1), (2) takes the form

u1 =
√
εrn cos(χn(ε)t+ nx), u2 =

√
εrn sin(χn(ε)t+ nx), n ∈ Z. (8)

The following statement is true:

Theorem 1. Let ω0 > 0, α > 0, γ > 0, d0 < 0 and let the inequality α > γn2

be true for some integer n. Then there exists ε0 > 0 such that, for 0 < ε < ε0,
problem (1), (2) has solutions (8) periodic in t.

2. Stability of periodic solutions. The equation in variations in the vicinity
of the solution (7) of equation (3) takes the form

∂v

∂t
= iω0v + ε

[
(γ + iδ)

∂2v

∂x2
+ (α+ iβ)v

]
+ ε(d0 + ic0)(2r

2
nv + w2

nv̄), (9)

where wn = rn exp(i(χn(ε)t+nx)), χn(ε) = ω0+ εβ+ εc0r
2
n− εδn2. By the change

of variables v = w exp(iχn(ε)t) in Eq. (9), we find

∂w

∂t
= ε

[
(γ + iδ)

∂2w

∂x2
+ ηnw + (d0 + ic0)r

2
n(w + w exp(2inx))

]
, (10)

where ηn = α+ iδn2 + d0r
2
n.

We seek the solution of Eq. (10) in the form of Fourier series in the complex
form

w(t, x) =
∞∑

k=−∞

yk(t) exp(ikx), w(t, x) =
∞∑

k=−∞

vk(t) exp(ikx). (11)

Substituting (11) in (10) and equating the coefficients of exp(ikx), we obtain the
equations for the coefficients of the Fourier series

dyk+n

dt
= ε[ηnyk+n − (γ + iδ)(k + n)2yk+n + (d0 + ic0)r

2
n(yk+n + vk−n)]. (12)

Similarly, substituting (11) in the equation adjoint to (10), we get

dvk−n

dt
= ε[ηnvk−n − (γ − iδ)(k − n)2vk−n + (d0 − ic0)r

2
n(vk−n + yk+n)]. (13)

The stability of the wave solutions of problem (1), (2) is determined by the
stability of system (12), (13) with a parameter k ∈ Z. By the change of variables
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yk+n = zk+n exp(−2iεδkn), vk−n = wk−n exp(−2iεδkn) in system (12), (13), we
get a linear system with the matrix

εA =

(
εa11 εa12
εa21 εa22

)
.

The matrix A has an eigenvalue equal to zero for k = 0. Since the sum of diagonal
elements of the matrix A is negative, a = a11 + a22 < 0, for the orbital exponential
stability of the periodic solution un(t, x), it is necessary and sufficient that the
condition a2c > f2, where c = Re(det(A)), f = Im(det(A)), f = 4γkn(c0r

2
n− δk2),

be satisfied for k ̸= 0, i.e.

(d0r
2
n−γk2)2(γ2k2+ δ2k2− 2γd0r

2
n− 4γ2n2− 2δc0r

2
n) > 4γ2n2(c0r

2
n− δk2)2, (14)

where r2n = (γn2 − α)/d0.

Theorem 2. The traveling waves un(t, x) of problem (1), (2) are exponentially
orbitally stable if and only if condition (14) is satisfied for all k ∈ Z\{0}.

As an example, we consider a system (1), where δ = 0, c0 = 0. Hence, Theorem
1 implies that the periodic solution

un =
√
ε(α− γn2)|d0|−1

(
cos(ω0t+ nx)
sin(ω0t+ nx)

)
exists for d0 < 0 and γn2 < α. By Theorem 2, the traveling waves un(t, x) are

exponentially orbitally stable if and only if n2 <
1

6γ
(γ + 2α).
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