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NONLOCAL MULTIPOINT (IN TIME) PROBLEM WITH OBLIQUE DERIVATIVE  
FOR A PARABOLIC EQUATION WITH DEGENERATION 

І. D. Pukal’s’kyi  and  B. O. Yashan  UDC 517.956 

For a second-order parabolic equation, we consider a multipoint (in time) problem with oblique deriva-
tive.  The coefficients of the equation and boundary condition have power singularities of any order in 
time and spatial variables on a certain set of points.  We establish conditions for the existence and 
uniqueness of solution of the posed problem in Hölder’s spaces with power weight. 

In the last decades, special attention is given to problems for partial differential equations with nonlocal 
conditions.  The interest to problems of this kind is explained both by the needs of the general theory of bounda-
ry-value problems and by their wide practical applications (diffusion and vibration processes, salt and moisture 
transfer in soils, plasma physics, mathematical biology, etc.).  It was also shown that nonlocal conditions can 
be used for the description of solvable extensions of differential operators.  Ptashnyk and his colleagues [1, 4, 
6, 7], used the metric approach to the investigation of the conditionally well-posed problems with multipoint 
conditions with respect to the selected variable for linear hyperbolic and typeless equations and also for some 
classes of parabolic equations with constant coefficients.  They proved metric theorems on the lower estimates 
of small denominators encountered in the solution of the analyzed problems, which yield the well-posedness of 
these problems for almost all (with respect to the Lebesgue measure) values of the parameters. 

In bounded cylindrical domains, the problems with nonlocal and integral conditions with respect to the time 
variable were studied in [2, 8–10, 14] for parabolic equations with power singularities of any order in the  coef-
ficients of equations and in the boundary conditions (with respect to any variables on a certain set of points).   
The works [3, 11, 13] were devoted to the classical solutions of boundary-value problems with impulsive action 
for second-order parabolic equations whose coefficients have power singularities with respect to the spatial vari-
ables.  

In the present work, we investigate a multipoint (in time) problem with oblique derivative for a second-
order parabolic equation with power singularities and degenerations of any order in the coefficients of the equa-
tion and in boundary condition with respect to any variables on a certain set of points.  We also establish condi-
tions for the existence and uniqueness of solution of the formulated problem in Hölder’s spaces with power 
weight.  

1.  Statement of the Problem and Basic Restrictions 

Suppose that  D   is a bounded domain in   Rn   with boundary  ∂D ,  dimD = n ,  Ω   is a bounded domain,  
Ω ⊂ D ,  dimΩ ≤ n −1 ,  η,  t0 , t1,  … , tN ,  and  tN+1  are fixed positive numbers,  0 ≤ t0 < t1 <   … < tN+1,  
t0 < η < tN+1 ,  η ≠ tλ ,    λ ∈{1,2,…,N}.  We denote  
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  Q(0) = {(t, x): t ∈[t0 ,tN+1) ,   x ∈Ω}∪   {(t, x): t = η, x ∈D} ,      

 Q(k ) = [tk ,tk+1)× D,        k ∈{0,1,…,N},   

and   

 Γ(k ) = [tk ,tk+1)× ∂D . 

In the domain  Q = [t0 ,tN+1)× D ,  we consider a problem of finding a function u(t, x)  satisfying, for  t ≠ tk ,  
(t, x)∉Q(0) ,  an equation 

 (Lu)(t, x) = ∂t − Aij (t, x)∂xi ∂x j
i, j=1

n

∑ + Ai (t, x)∂xi
i=1

n

∑ + A0 (t, x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u(t, x) = f (t, x), (1) 

a multipoint (in time  t )  condition  

   u(tk + 0, x) = ϕk (x), x ∈D\Ω, k ∈{0,1,…,N} ,  (2) 

and a boundary condition 

 lim
x→z∈∂D

(Bu − g)(t, x) ≡ lim
x→z∈∂D

bi (t, x)∂xi u + b0 (t, x)u − g(t, x)
i=1

n

∑⎡
⎣
⎢

⎤

⎦
⎥ = 0 . (3) 

The power singularities of coefficients of the differential expressions  L   and  B   at point  P(t, x)∈Q\Q0  
are characterized by functions  s1(βi

(1) ,t )   and  s2 (βi
(2) , x) : 

 s1(βi
(1) ,t ) = t − η βi

(1)
, t − η ≤ 1,

1, t − η ≥ 1,

⎧
⎨
⎪

⎩⎪
      s2 (βi

(2) , x) = ρβi
(2 )

(x), ρ(x) ≤ 1,

1, ρ(x) ≥ 1,

⎧
⎨
⎪

⎩⎪
 

 ρ(x) = inf
z∈Ω

x − z ,      βi
(ν) ∈(−∞,∞) ,    ν ∈{1,2},       β

(ν) = (β1
(ν) ,…,βn

(ν) ),      β = (β(1) ,β(2) ). 

We now define the spaces used to study problem (1)–(3).  Let   ℓ ,  q(1),  q(2) ,  γ (1) ,  γ (2) ,  µ j
(1) ,  µ j

(2),  δ(1) ,  

and  δ(2)  be real numbers.  Also let   ℓ ≥ 0 ,    [ℓ]  be the integer part of   ℓ ,      {ℓ} = ℓ − [ℓ];  q(ν) ≥ 0 ,  γ (ν) ≥ 0 ,  
µ j
(ν) ≥ 0 ,  δ(ν) ≥ 0 ,   ν ∈{1,2},    j ∈{0,…,n};  and let  P(t, x),  P1(t

(1) , x(1) ) ,  P2 (t
(2) , x(1) ),  and  Ri (t

(1) , x(2) )  

be arbitrary points from  Q(k ) ,    i∈{1,2,…n},    x
(1) = (x1

(1) , x2
(1) ,…, xn

(1) ) ,   x
(2) = (x1

(1) ,…, xi−1
(1) , xi

(2) , xi+1
(1) ,…, xn

(1) ). 
By   H

ℓ (γ;β;q;Q)   we denote the set of functions  u   with continuous derivatives in  Q(k ) \Q(0)   for  t ≠ tk   

of the form  ∂t
s ∂x

r ,  (here,    2s + r ≤ [ℓ],   r = r1 +…+ rn ,   r = (r1,r2 ,…,rn )  is a multiindex) for which the norm 

 
 
u;γ;β;0;Q 0 = sup

k
{sup u }

Q(k )
≡ u;Q 0 , 
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u;γ;β;q;Q ℓ = sup

k
u;γ;β;q;Q(k )

2s+ r
2s+ r ≤[ℓ ]
∑ + u;γ;β;q;Q(k )

ℓ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

is finite.  Here, e.g.,  

 u;γ;β;q;Q(k )
2s+ r

≡ sup
P∈Q(k )

s1(q
(1) + 2sγ (1) ,t )s2 (q

(2) + 2sγ (2) , x)
⎡

⎣
⎢
⎢

 

  × ∂t
s ∂x

r u(P) s1(ri (γ
(1) −βi

(1) ),t )s2 (ri (γ
(2) −βi

(2) ), x)
i=1

n

∏ ⎤

⎦
⎥ , 

 
  
u;γ ,β,q;Q(k )

ℓ
≡

(P2 ,Rν )⊂Qk

sup s1(q
(1) + 2sγ (1) ,t (2) )s2 (q

(2)⎡

⎣
⎢
⎢

⎡

⎣
⎢
⎢ν=1

n

∑
⎧
⎨
⎪

⎩⎪2s+ r =[ℓ ]
∑  

  
 
+ 2sγ (2) , !x)

i=1

n

∏s1(ri (γ
(1) −βi

(1) ),t (2) )s2 (ri (γ
(2) −βi

(2) ), !x) 

    × ∂t
s ∂x

r u(P2 )− ∂t
s ∂x

r u(Rν ) xν
(1) − xν

(2) −{ℓ}
 

  
   
× s1({ℓ}(γ

(1) −βν
(1) ),t (2))s2({ℓ}(γ

(2) −βν
(2) ), !x)

⎤

⎦
⎥
⎥
 

  
   

+
(P1,P2 )⊂Qk

sup s1(q
(1) + ℓγ (1) , !t )s2(q

(2) + (2s + {ℓ})γ (2) , x(1))
⎡

⎣
⎢
⎢

 

  
   
×

i=1

n

∏s1(− riβi
(1) , !t )s2(ri (γ

(2) −βi
(2) ), x(1)) t (1) − t (2)

−{ℓ /2}
 

  × ∂t
s ∂x

r u(P1)− ∂t
s ∂x

r u(P2 )
⎤
⎦⎥
⎫
⎬
⎭

, 

   s1(q, !t ) = min{s1(q,t
(1) ), s1(q

(1) ,t (2) )},     and       s2 (q, !x) = min{s2 (q, x
(1) ), s2 (q, x

(2) )}. 

Suppose that the following conditions are satisfied for problem (1)–(3): 

(1°°).  For any vector   ξ = (ξ1,…,ξn )  and  ∀(t, x)∈Q\Q(0),  the inequality  

 π1 ξ 2 ≤ Aij (t, x)s1(βi
(1) ,t )s1(β j

(1) ,t )s2 (βi
(2) , x)s2 (β j

(2) , x)ξiξ j
i, j=1

n

∑ ≤ π2 ξ 2  (4) 
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is true.  Here,  π1   and  π2   are fixed positive constants, 

 ξ 2 = ξi
2

i=1

n

∑ ,      s1(µi
(1) ,t )s2 (µi

(2) , x)Ai ∈H α (γ;β;0;Q),        i∈{0,…,n}, 

 A0 ≥ −a ,      a > 0 ,      s1(δ
(1) ,t )s2 (δ

(2) , x)b0 ∈H 1+α (γ;β;0;Q), 

 s1(βi
(1) ,t )s1(β j

(1) ,t )s2 (βi
(2) , x)s2 (β j

(2) , x)Aij ∈H α (γ;β;0;Q), 

 s1(βi
(1) ,t )s2 (βi

(2) , x)bi ∈H 1+α (γ;β;0;Q), 

the vectors    b
(s ) = {b1

(s ) ,…,bn
(s )},  where   

 bi
(s ) = s1(βi

(1) ,t )s2 (βi
(2) , x)bi ,   

and    e = {e1,…,en} ,  where   

 ei =  bi ( bk
2

k=1

n

∑ )−1/2 ,   

form an angle smaller than  π2   with the direction of outer normal  n   to  ∂D   at the point  P(t, x)∈Γ ,   

 Γ = [t0 ,tN+1)× ∂D ,      b0 (t, x) Γ > 0 . 

(2°). 

 f ∈H α (γ;β;µ0 ;Q),       ϕk ∈H 2+α ( !γ; !β,0;Q ∩ (t = tk )),       !γ = (0,γ (2) ) ,       
!β = (0,β(2) ), 

 lim
x→z∈∂D

(Bϕk − g)(tk , x) = 0 ,        k ∈{0,1,…,N},      g ∈H 1+α (γ;β;δ;Q(k ) ),  

 
 
γ (ν) = max max

i
(1+βi

(ν) ),max
i

(γ (ν) −βi
(ν) ),

µ0
(ν)

2 ,δ(ν)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, ν ∈{1,2}. 

The following theorem is true:  

Theorem 1.  Suppose that conditions (1°) and (2°) are satisfied for problem (1)–(3).  Then there exists a 
unique solution of problem (1)–(3) from the space  H 2+α (γ;β;0;Q),  and the inequality  

 
 
u;γ ,β,0;Q 2+α ≤ csup

k
ϕk ;Q ∩ (t = tk ) 2+α + f ;Q(k )

α
+ g;Q(k )

1+α( ) (5) 

is true. 
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If f ∈H α (γ;β;0;Q), g ∈H 1+α (γ;β;0;Q(k ) ) , and conditions (1°) and (2°) are satisfied for problem (1)–(3), 
then the unique solution of problem (1)–(3) in the domain Q(k )  is determined by the following Stieltjes integrals 
with Borel measure  G(t, x;Z ): 

 u(t, x) = G1
(k ) (t, x;dτ,dξ) f (τ,ξ)

Q(k )
∫ + G2

(k ) (t, x;dξ)ϕk (ξ)
D
∫  

  + G3
(k ) (t, x;dτ,dξS)g(τ,ξ)

Γ(k )
∫ , (6) 

whose components  G1
(k ),  G2

(k ),  and  G3
(k )  satisfy the inequalities  

 G1
(k ) (t, x,dτ,dξ)

Q(k )
∫ ≤ A0

−1;Q(k )
0

,      G2
(k ) (t, x;dξ)

D
∫ ≤ 1, 

 G3
(k ) (t, x;dτ,dξS)

Γ(k )
∫ ≤ b0

−1;Q(k )
0

. (7) 

To prove Theorem 1, we first establish the correct solvability of boundary-value problems with smooth co-
efficients.  In the set of obtained solutions, we select a convergent subsequence whose limit value is the solution 
of problem (1)–(3). 

2.  Estimation of the Solutions of Problems with Smooth Coefficients 

Let    Qm
(k ) = Q(k ) ∩{(t, x)∈Q(k ) : s1(1,t )≥ m1

−1, s2 (1, x) ≥ m2
−1,m = (m1,m2 ),mi > 1,i ∈{1,2}}  be a sequence 

of domains convergent to  Q(k )   as  mi →∞ . 
In the domain  Q = [t0 ,tN+1)× D ,  we consider the problem of finding the solutions of the equation 

 (L1um )(t, x) ≡ ∂t −
i, j=1

n

∑ aij (t, x)∂xi ∂x j +
i=1

n

∑ai (t, x)∂xi + a0 (t, x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
um (t, x) = fm (t, x)  (8) 

satisfying the multipoint conditions (in the variable  t ): 

   um (tk + 0, x) = ϕm
(k ) (x), k ∈{0,1,…,N} , (9) 

and the following boundary condition on the lateral surface: 

 lim
x→z∈∂D

(B1um − gm )(t, x) 

  = lim
x→z∈∂D

hi (t, x)∂xi um
i=1

n

∑ + h0 (t, x)um − gm (t, x)
⎡

⎣
⎢

⎤

⎦
⎥ = 0 . (10) 
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Here, the coefficients  aij ,  ai ,  a0 ,  hi ,  and  h0   and the functions  fm ,  ϕm
(k ) ,  and  gm   are determined in 

the following way:  If  (t, x)∈Qm
(k ),  then the coefficients  aij ,  ai ,  a0 ,  hi ,  h0   and functions  fm ,  ϕm

(k ) ,  gm   

coincide with  Aij ,   Ai ,  A0 ,  f ,  ϕk ,  and  g ,  respectively.  In the domains  Q(k ) \Qm
(k ),  these coefficients and 

functions are regarded as continuous extensions of the coefficients  Aij ,  Ai ,  A0 ,  bi ,  and  b0  and functions  f ,  

ϕk ,  and  g   from the domains  Qm
(k )   into the domains  Q(k ) \Qm

(k )  with preservation of their smoothness and 
norms [12, p. 82]. 

The following theorem is true: 

Theorem 2.  Suppose that  um   is a classical solution of problem (8)–(10) in the domain  Q   and condi-
tions (1°) and (2°) are satisfied.  Then the following estimate is true for  um (t, x): 

 
 
um (t, x) ≤ sup

k
ϕm
(k );Qk ∩ (t = tk ) 0

+ fma0
−1;Q(k )

0
+ gmh0

−1;Q(k )
0( ). (11) 

Proof.  The validity of estimate (11) is established by using the same procedure as in the proof of Theo-
rem 2.2 from [5, p. 25].  A difference is observed only in the case where  0 < max

Qk
um = um (P1),  P1 ∈Q

(k ).   

In view of the sufficient conditions for the existence of maximum of a function of several variables at the 
point  P1,  we arrive at the following relations:  

 ∂t um (P1) ≥ 0 ,      ∂xi um (P1) = 0 ,       aij (P1)∂xix j
i, j=1

n

∑ um (P1) ≤ 0 , (12) 

and equation (8) is also satisfied. 
The last inequality in (12) is true because, at the point of maximum, the second derivatives  ∂yiy j um   taken 

in any direction 

 y j = αij s1(βi
(1) ,t (1) )s2 (βi

(2) , x(1) )(xi − xi
(1) )

i=1

n

∑ , det α ij ≠ 0 , 

are nonpositive and, moreover,  

 aij (P1)∂xix j
i, j=1

n

∑ um (P1)  

  
 

= s1(βi
(1) ,t (1) )s1(βk

(1) ,t (1) )s2 (βi
(2) , x(1) )s2 (βk

(2) , x(1) )
i,k=1

n

∑
⎧
⎨
⎪

⎩⎪ℓ, j=1

n

∑  

   
 
× αkℓαij

⎫
⎬
⎭
∂y j yℓ um (P1) = λℓ ∂yℓyℓ um

ℓ=1

n

∑ < 0 .  
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Since   λ1,…,λn   are the characteristic numbers of quadratic form, they are positive according to re-
striction (4).  In view of (12) and Eq. (8), the inequality 

 um (P1) ≤ fm (P1)a0
−1(P1)  

is true at the point  P1 . 
Similarly, if we consider the point where the function takes the least negative value for  min

Q(k )
um =   

um (P2 ) < 0 ,  P2 ∈Q
(k ) ,  then we get 

 um (P2 ) ≥ fm (P2 )a0
−1(P2 ) . 

We now estimate the derivatives of the solutions  um (t, x).  In the space   C
ℓ (Q) ,  we introduce a norm  

 um ;γ;β;q;Q ℓ   equivalent, for fixed  m1  and  m2 ,  to the Hölder norm defined in exactly the same way as  

the norm  u;γ;β;q;Q ℓ  but with functions d1(q
(1) ,t ) and d2 (q

(2) , x)  instead of the functions s1(q
(1) ,t )  and 

s2 (q
(2) , x) ,  respectively: 

 

 

d1(q
(1) ,t ) =

max{s1(q
(1) ,t ),m1

−q(1) }, q(1) ≥ 0,

min{s1(q
(1) ,t ),m1

−q(1) }, q(1) < 0,

⎧
⎨
⎪

⎩⎪
 

 

 

d2 (q
(2) , x) =

max{s2 (q
(2) , x),m2

−q(2 ) }, q(2) ≥ 0,

min{s2 (q
(2) , x),m2

−q(2 ) }, q(2) < 0.

⎧
⎨
⎪

⎩⎪
 

The following assertion is true: 

Theorem 3.  Assume that conditions (1°) and (2°) are satisfied.  Then the solution of problem (8)–(10) sat-
isfies the following estimate: 

 
 
um ;γ ,β,0;Q 2+α ≤ csup

k
ϕm
(k ); !γ; !β;0;Q ∩ (t = tk ) 2+α

+ fm ;γ;β;µ0 ;Qk α(  

  + gm ;γ;β;δ;Q
(k )

1+α
+ um ;Q

(k )
0 ) . (13) 

Proof.  Consider the problem  

 (L1um )(t, x) = fm (t, x),  

 (B1um − gm )(t, x) Γ(k ) = 0 ,  (14) 

 um (tk + 0, x) = ϕm
(k ) 

in the domains  Q(k ) ,    k∈{0,1,…,N}. 
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The solution of the boundary-value problem (14) in  Q(k )   exists and is unique in the space  C2+α (Q(k ) )  [5, 
p. 364].  To estimate this solution, we apply the interpolation inequalities from [9, 12] and obtain  

 um ;γ;β;0;Q
(k )

2+α
≤ (1+ εα ) um ;γ;β;0;Q

(k )
2+α

+ c(ε) um ;Q
(k )

0
, 

where  ε   is an arbitrary real number from  (0,1).  Therefore, it is sufficient to estimate the seminorm   

 um ;γ;β;0;Q
(k )

2+α
.  

As follows from the definition of seminorm, in the domain  Q(k ) ,  one can find points  P1,  P2 ,  and  Ri   for 
which one of the following inequalities is true: 

 
 
1
2 um ;γ;β;0;Q

(k )
2+α

≤ Ee , e∈{1,2} , (15) 

where 

 
  
E1 = d1(2sγ

(1) ,t (2))d2(2sγ
(2) , !x)

ν=1

n

∑ d1(ri (γ
(1) −βi

(1) ),t (2))
i=1

n

∏⎧
⎨
⎩⎪2s+ r =2

∑  

    × d2(ri (γ
(2) −βi

(2) ), !x) ∂t
s ∂x

r um (P2 )− ∂t
s ∂x

r um (Rν )  

  
   
× xν

(1) − xν
(2) −α/2

d1(α(γ
(1) −βν

(1) ),t (1))d2(α(γ
(2) −βν

(2) ), !x)
⎫
⎬
⎭

, 

 
  
E2 = d1((2 +α)γ

(1) , !t )d2((2s +α)γ
(2) , x(1)) d1(− riβi

(1) , !t )
i=1

n

∏  

   × d2(ri (γ
(2) −βi

(2) ), x(1)) t (1) − t (2)
−α /2

 

  × ∂t
s ∂x

r um (P1)− ∂t
s ∂x

r um (P2 ) . 

If  

 
  
xν
(1) − xν

(2) ≥
ε1
4
1
n d1(γ

(1) , !t )d2(γ
(2) −βν

(2) , !x) ≡ T1 

and  ε1  is an arbitrary real number from  (0,1),  then 

 E1 ≤ 2ε1
−α um ;γ;β;0;Q

(k )
2

. (16) 
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Moreover, if  

 
  
t (1) − t (2) ≥

ε1
2

16 d1(2γ
(1) , !t )d2(2γ

(2) , !x) ≡ T2 ,  

then 

 E2 ≤ 2ε1
−α um ;γ;β;0;Q

(k )
2

. (17) 

Applying the interpolation inequalities to (16) and (17), we find  

 
 
Ee ≤ εα um ;γ;β;0;Q

(k )
2+α

+C(ε) um ;Q
(k )

0
, e∈{1,2}. (18) 

Let  xν
(1) − xν

(2) ≤ T1  and t (1) − t (2) ≤ T2 .  We assume that   

 xν
(1) − zν ≤ 4T1 ,  z ∈∂D ,   

and 

   d1(γ
(1) , !t ) = min{d1(γ

(1) ,t (1)),d1(γ
(1) ,t (2))} ≡ d1(γ

(1) ,t (1)) , 

   d2(γ
(2) , !x) = min{d2(γ

(2) , x(1)),d2(γ
(2) , x(2))} ≡ d2(γ

(2) , x(1)),  

 P1(t
(1) , x(1) )∈Q(k ) ,    k ∈{0,1,…,N}.   

For simplicity, we set  ν = n .  Suppose that   K(P)   is a ball of radius  R0 ,  R0 ≥ 4(T1n +T2 ) ,  centered at  
a point  P ∈Γ(k )   and that the points   {P1,P2 ,Ri}∈Γ(k ).  By using the restriction imposed on the smoothness of 
the boundary  ∂D ,  we can straighten    ∂D ∩K(P)  with the help of a bijective transformation  x = η(ξ)  from 
[12, p. 126].  As a result of this transformation, the domain    Q

(k ) ∩K(P)  turns into the domain  D(k )   at the 

points of which  ξn ≥ 0 .  We assume that, under this transformation,  um (t, x),  P1,  P2 ,  Ri ,  Eµ ,  d2 (γ
(2) , x(1) ) ,  

T1,  and  T2   are transformed into  vm (t,ξ),  M1(t
(1) ,ξ(1) ) ,  M 2 (t

(2) ,ξ(1) ),  Zi (t
(2) ,ξ(2) ),  Eµ

(1) ,  d3(γ
(2) , x(1) ) ,  

T1
(1) ,  and  T2

(1) ,  respectively.  The coefficients of the differential expressions  L1   and  B1   in the domain  D(k )   
are denoted by   !aij (t,ξ) ,   !ai (t,ξ),   !a0 (t,ξ),   

!hk (t,ξ) ,  and   
!h0 (t,ξ) .  Hence,  vm (t,ξ)  is a solution of the  

problem 

 
  
∂t − !aij (M1)∂ξiξ j

i, j=1

n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
vm (t,ξ) = [ !aij (t,ξ)− !aij (M1)]∂ξiξ j

i, j=1

n

∑ vm  

  
 
− !ai (t,ξ)∂ξi vm

i=1

n

∑ − !a0 (t,ξ)vm + fm (t,η(ξ)) ≡ Fm (t,ξ;vm ) , (19) 
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 vm (tk + 0,ξ) = ϕm
(k ) (η(ξ)), (20) 

 
  

!hi (M1)∂ξi vm (t,ξ)
i=1

n

∑
ξn=0

= [ !hi (M1)− !hi (t,ξ)]∂ξi vm
i=1

n

∑ − !h0 (t,ξ)vm
⎧
⎨
⎩

 

  + gm (t,η(ξ))
⎫
⎬
⎭ ξn=0

= Gm (t,ξ,vm ) ξn=0 . (21) 

Let  Πτ
(1)   be a domain in  D(k ) : 

 
  
Πτ

(1) = {(t,ξ)∈D(k ) : ξν − ξν
1 ≤ τT1

(1) , ν ∈{1,…,n}, t − t (1) ≤ τ2T2
(1)}.  

By the change of variables  

 vm (t,ξ) = ωm (t, y), ξν = d1(βν
(1) ,t (1) )d3(βν

(2) ,ξ(1) )yν , 

in problem (19)–(21), we obtain 

 
 
(L2ωm )(t, y) ≡ ∂t −

i, j=1

n

∑ d1(βi
(1) ,t (1))d1(β j

(1) ,t (1))d3(βi
(2) ,ξ(1))d3(β j

(2) ,ξ(1))
⎡

⎣
⎢
⎢

 

  
  
× !aij(t

(1) ,ξ(1))∂yi y j
⎤

⎦
⎥ωm = Fm (t,Y ;ωm ),  (22) 

 ωm (tk + 0, y) = ϕm
(k ) (η(Y )), (23) 

 
 

(B2ωm )(t, y) ym=0
≡ !hi (t

(1) ,ξ(1) )d1(βi
(1) ,t (1) )d3(βi

(2) ,ξ(1) )∂yi ωm
i=1

n

∑⎡
⎣
⎢

⎤

⎦
⎥
yn=0

 

  = Gm (t,Y ,ωm ) yn=0
, (24) 

where  

   Y = (d1(−β1
(1) ,t (1))d3(−β1

(2) ,ξ(1))y1,…,d1(−βn
(1) ,t (1))d3(−βn

(2) ,ξ(1))yn ). 

We denote 

  yν
(1) = d1(−βν

(1) ,t (1))d3(−βν
(2) ,ξ(1))xν

(1) , 
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 Vτ = (t, y): t − t (1) ≤ τ2T2
(1) , yν − yν

(1) ≤ τ
n T2

(1)⎧
⎨
⎩

⎫
⎬
⎭

 

and choose a three times differentiable function  ψ(t, y)  as follows: 

 

 

ψ(t, y) =
1, (t, y)∈V1/2 , 0 ≤ ψ(t, y) ≤ 1,

0, (t, y) /∈V3/4 , ∂t
s ∂x

r ψ ≤ crsd1(− (2s + r )γ (1) ,t (1))d3(− (2s + r )γ (2) ,ξ(1)).

⎧

⎨
⎪

⎩
⎪

 

Then the function  Wm (t, y) = ωm (t, y)ψ(t, y)  is a solution of the boundary-value problem  

 
  
(L2Wm )(t, y) ≡ !aij(t

(1) ,ξ(1))d1(βi
(1) ,t (1))d1(β j

(1) ,t (1))d3(βi
(2) ,ξ(1))

i, j=1

n

∑  

  
 
× d3(β j

(2) ,ξ(1)){∂yi ωm ∂y j ψ + ∂y j ωm ∂yi ψ +ωm ∂yi y j ψ}  

  − ωm ∂tψ + ψFm ≡ Fm
(1) (t,Y ,ωm ) , (25) 

 Wm (tk + 0, y) = ψ(tk , y)ϕm
(k ) (η(Y )) ≡ Φm (tk , y), (26) 

 (B2Wm )(t, y) ym=0
= ψ(t, y)Gm (t,Y ,ωm )
⎧
⎨
⎩

 

  
  
− ωm

!hi(t
(1) ,ξ(1))d1(βi

(1) ,t (1))
i=1

n

∑  

  
 

× d3(βi
(2) ,ξ(1))∂yi ψ

⎫
⎬
⎭ yn=0

= Πm (t,Y ;ωm ) yn=0
. (27) 

The coefficients of Eq. (25) and the boundary condition (27) are limited by constants independent of the 
point  M1.  Therefore, in view of Theorem 6.1 [5, p. 364], for any points  (M 3,M 4 )⊂ V1/2 ,  the following ine-
quality is true: 

d−α (M3,M4 ) ∂t
s∂y

rωm (M3 ) − ∂t
s∂y

rωm (M4 )  

  ≤ c Fm
(1)

Cα (V3/4 )
+ Φm C2+α (V3/4∩(t=tk ))

+ Πm C1+α (V3/4 )
⎛
⎝⎜

⎞
⎠⎟
, 2s + r = 2 , (28) 

where  d(M 3,M 4 )   is the parabolic distance between the points  M 3   and  M 4 . 
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In view of the properties of the function  ψ(t, y) ,  we estimate the norms of the expressions  Fm
(1) ,  Φm ,  

and  Πm   as follows: 

 
 
Fm
(1)

Cα (V3/4 )
≤ cd1(−(2 +α)γ

(1) ,t (1))d3(−(2 +α)γ
(2) ,ξ(1))  

  
 
×( fm ;γ;0,2γ;V3/4 α

+ ωm ;V3/4 0
+ ωm ;γ;0,0;V3/4 2

), (29) 

 
  
Φm C2+α (V3/4∩(t=tk ))

≤ cd1(− (2 +α)γ
(1) ,t (1))d3(− (2 +α)γ

(2) ,ξ(1)) 

  
 
× ϕm

(k ); !γ;0;0;V3/4 ∩ (t = tk ) 2+α
, (30) 

 
 
Πm C1+α (V3/4 )

≤ cd1(− (2 +α)γ
(1) ,t (1))d3(− (2 +α)γ

(2) ,ξ(1)) 

  
 
×( Gm ;γ;0;γ;V3/4 α

+ ωm ;V3/4 0
+ ωm ;γ;0,0;V3/4 2

). (31) 

It follows from the definition of   H
ℓ (γ;β;q;Q)   that the following inequalities are true: 

 
 
c1 ωm ;γ;0;0;V3/4 ℓ ≤ vm ;γ;β;0;Π3/4

(1)
ℓ
≤ c2 ωm ;γ;0;0;V3/4 ℓ . 

Substituting (29)–(31) in (28) and returning to the variables  (t, x) ,  we arrive at inequalities 

 Eµ ≤ (εα (n + 2)+ ε1Cn
2 ) um ;γ;β;0;Q

(k )
2+α

+C um ;Q
(k )

0(   

  + fm ;γ;β;2γ;Q
(k )

α
+ gm ;γ;β;γ;Q

(k )
1+α

 

  
 
+ ϕm

(k ); !γ; !β;0;Q(k ) ∩ (t = tk ) 2+α ). (32) 

Suppose that  xν
(1) − xν

(2) ≤ T1,  t (1) − t (2) ≤ T2 ,  and  xν
(1) − zν ≥ 4T1,  z ∈∂D . In the domain  Q(k )   we 

represent problem (14) as follows:  

 
 
∂t − aij (P1)∂xix j

i, j=1

n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
um = [aij (P)− aij (P1)]∂xix j um

i, j=1

n

∑ − ai (P)∂xi um
i=1

n

∑  

  − a0 (P)um + fm (t,λ) ≡ F(t, x,um ), 

 um (tk + 0, x) = ϕm
(k ) (x), 
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hi (P1)∂xi um
i=1

n

∑
Γ(k )

= [hi (P1)− hi (P)]∂xi um
i=1

n

∑ − h0 (P)um + gm (P)
⎧
⎨
⎩

⎫
⎬
⎭ Γ(k )

 

  = Φm (t, x,um ) Γ(k ) . 

Repeating the reasoning presented above and using Theorem 5.3 from [5, p. 364], we obtain the inequality  

 Eµ ≤ (εα (n + 2)+ ε1Cn
2 ) um ;γ;β;0;Q

(k )
2+α

+C um ;Q
(k )

0(  

  + fm ;γ;β;2γ;Q
(k )

α
+ gm ;γ;β;γ;Q

(k )
1+α

 

  
 
+ ϕm

(k ); !γ; !β;0;Q(k ) ∩ (t = tk ) 2+α ). (33) 

Combining inequalities (15), (18), (32), and (33), we get estimate (13). 

Proof of Theorem 1.  Since 

 fm ;γ;β;µ0 ;Q
(k )

α
≤ c f ;γ;β;µ0 ;Q

(k )
α

, 

 gm ;γ;β;δ;Q
(k )

1+α
≤ c g;γ;β;δ;Q(k )

1+α
, 

 
 
ϕm
(k ); !γ; !β;0;Q ∩ (t = tk ) 2+α

≤ c ϕk ; !γ;
!β;0;Q ∩ (t = tk ) 2+α

, 

by virtue of inequalities (11) and (13), we find  

 
 
um ;γ;β;Q 2+α ≤ csup

k
ϕk ; !γ;

!β;0;Q ∩ (t = tk ) 2+α
+ f ;γ;β;µ0 ;Q

(k )
α(  

  + g;γ;β;δ;Q(k )
1+α ) . (34) 

The right-hand side of inequality (34) is independent of  m1  and  m2 ,  and the sequences 

  {Um
(0) ≡ um (P)}, 

 
 
{Um

(1) ≡ d1(γ
(1) −βi

(1) ,t)d2(γ
(2) −βi

(2) , x)∂xi um}, 

  {Um
(2) ≡ d1(2γ

(1) ,t)d2(2γ
(2) , x)∂t um} , 
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  {Um
(3) ≡ d1(γ

(1) −βi
(1) ,t)d1(γ

(1) −β j
(1) ,t)d2(γ

(2) −βi
(2) , x) 

  
 
× d2(γ

(2) −β j
(2) , x)∂xix j um}, P(t, x)∈Q(k ) ,  

are uniformly bounded and equicontinuous in  Q(k ) .  According to the Arzelà theorem, there exist subsequenc-
es    {Um(ℓ)

(µ) }   uniformly convergent to  Uµ   in  Q(k ) ,   µ ∈{0,1,2,3}.  Passing to the limit as   m(ℓ)→∞   in prob-

lem (8)–(10), we conclude that  u(t, x) =U0
(0)  is the unique solution of problem (1)–(3),  u ∈H 2+α (γ;β;0;Q),  

and estimate (5) is true. 
Since   H

ℓ (γ;β;q;Q)⊂H ℓ (γ;β;0;Q) , for  f (t, x)∈H α (γ;β;0;Q)  and  g(t, x)∈H 1+α (γ;β;0;Q)  we get  the 
following estimates: 

 f ;γ;β;µ0 ;Q
(k )

α
≤ c f ;γ;β;0;Q(k )

α
, 

   (35) 
 g;γ;β;δ;Q(k )

1+α
≤ c g;γ;β;0;Q(k )

1+α
. 

By using estimates (5) and (35) for the solution of problem (1)–(3), we establish the validity of the estimate  

 
 
u;γ;β;0;Q 2+α ≤ csup

k
ϕk ; !γ;

!β;0;Q ∩ (t = tk ) 2+α
+ f ;γ;β;0;Q(k )

α(  

  + g;γ;β;0;Q(k )
1+α ) . (36) 

Note that the space   

  Hα = H α (γ;β;0;Q(k ) )× H 2+α ( !γ; !β;0;Q ∩ (t = tk ))   

is embedded in the space  C(Q(k ) ) ,  Hα ⊂ C(Q(k ) ) .  Therefore, by the Riesz theorem, we can assume that, for 
fixed  (t, x)∈Q(k ),  the linear continuous functional  u(t, x)   generates a Borel measure  G(t, x,Z (k ) )  defined on 
a σ -algebra of the subsets  Z (k )   of the domain  Q(k ) ,  including  Q(k )   and all its open subsets for which the 
value of the functional is given by formula (6). 

As follows from Theorem 2, inequalities (7) are satisfied for the solution of problem (1)–(3): 

 u1 ≡
Qk

∫ G1
(k ) (t, x;dτ,dξ) f (τ,ξ) ≤ fA0

−1;Q(k )
0
, 

 
 
u2 ≡

D
∫G2

(k ) (t, x;0,dξ)ϕk (ξ) ≤ ϕk ;Q ∩ (t = tk ) 0 , (37) 

 u3 ≡
Γ(k )
∫ G3

(k ) (t, x;dτ,dξS)g(τ,ξ) ≤ gb0
−1;Q(k )

0
, 
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where  u1   is an arbitrary solution of problem (1)–(3) for  g ≡ 0   and  ϕk ≡ 0 ;  u2   is a solution of the boundary-
value problem (1)–(3) for  f ≡ 0   and  g ≡ 0 ,  and  u3   is a solution of boundary-value problem (1)–(3) for  
f ≡ 0   and  ϕk ≡ 0 . 

Substituting  f (t, x)≡ 1,  ϕk (x) ≡ 1 ,  and  g(t, x) ≡ 0   in inequalities (37), we arrive at inequalities (6). 
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