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LOCALIZATION PROPERTY FOR REGULAR SOLUTIONS OF THE CAUCHY PROBLEM 
FOR A FRACTAL EQUATION OF THE INTEGRAL FORM 

V. A. Litovchenko  UDC 517.956 

We consider a fractal equation of the integral form with Bessel fractional integrodifferential operator 
and a positive parameter.  In a part of the initial hyperplane, where the limit value has good properties, 
we establish the property of local strengthening of the convergence of regular solutions with generalized 
limit values. 

Keywords:  Cauchy problem, generalized limit value, localization property of the solution, Bessel frac-
tional integrodifferential operator.  

Introduction 

In view of the nonlocality of fractional derivatives, numerous dynamical systems are described more exactly 
due to the application of differential equations of fractional orders.  Various natural systems in different fields  
of science, such as the viscoelasticity, electric circuits, nonlinear oscillations caused by earthquakes, or diffusion 
processes in fractal media exhibit an intermediate behavior that can be modeled solely with the help of differen-
tial equations of fractional orders.  Therefore, these equations form an important alternative to differential equa-
tions of integer orders.  At present, they attract significant attention of the researchers and form a subject of  
active debates and discussions at various scientific meetings and conferences (see, e.g., [9, 14, 15, 17, 18]).  

Consider a fractal equation of the integral form 

 
  

∂t u(t, x)+ ((aE − Δ x )
τ /2u)(t, x)dτ = 0,

−∞

γ

∫ (t, x)∈Π := (0,+∞)×!n , (1) 

where  γ > 0 ,   (aE − Δ x )
τ /2   is the Bessel operator of fractional integrodifferentiation with a parameter  a > 1  

[10, 13].  Moreover, the values of  a   and  γ   are such that the function  
 
!Ωγ (⋅) := !Pγ (⋅)− !Pγ (0)  is convex on 

the set  [0,+∞).  Here,   E   is the identity operator,  
 
Δ x := ∂x1

2 +…+ ∂xn
2   is the Laplace operator, and  

 
  
!Pγ (ζ) :=

(a + ζ2 )γ /2

ln(a + ζ2 )1/2
, ζ ∈R . 

In the Schwartz space  S   of rapidly decreasing functions [19], Eq. (1) is equivalent to the pseudodifferen-
tial equation [7] 
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 ∂t u(t, x)+ F−1[Pγ (ξ)F[u](t,ξ)](t, x) = 0, (t, x)∈Π , 

whose structure is close to the structure of the classical heat-conduction equation.  Here,  F   is the Fourier trans-
formation operator,  

 
Pγ (⋅) := !Pγ ( ⋅ )  denotes pseudodifferentiation,  ⋅ := (⋅, ⋅)1/2   is the Euclidean norm, 

and  (⋅, ⋅)  is the scalar product in   Rn .  
In [7], the author established the absolute solvability of the Cauchy problem for Eq. (1) in special spac-

es  Wβ
Ω   obtained as certain generalization of the well-known Gelfand, Shilov, and Gurevich spaces  S   and  W   

[2, 4].  Actually, in the cited work, one can find the description of the entire set of initial data for which this 
problem is correctly solvable.  In this case, its solution is regular and has the same property of smoothness and 
the same behavior in the neighborhoods of infinitely remote space points as the fundamental solution of the 
Cauchy problem. 

It is worth noting that this set of initial data forms a sufficiently broad class some elements of which are 
generalized functions.  Therefore, the initial condition of this Cauchy problem was formulated with a somewhat 
weakened notion of the limit.  However, it is known from the classical theory of Cauchy problem for parabolic 
equations (and, in particular, for the heat-conduction equation) that the classical solutions  u(t, ⋅)  of these equa-
tions with continuous limit  values  f (⋅)   on the initial hyperplane  t = 0   approach  f (⋅)   as t → +0   uniformly 
in the space variable on every compact part of this hyperplane (see [12, 14]).  Thus, it is natural to ask whether 
the property of convergence in the initial condition of the Cauchy problem for Eq. (1) considered in [7] can be 
locally strengthened in the case where the initial generalized function  f   has “good” local properties.  In other 
words, we arrive at the problem of localization principle.  

Note that a similar problem was first considered in the theory of trigonometric series (see [11]).  The inves-
tigations aimed at getting the localization principle were carried out for the solutions of partial differential equa-
tions parabolic in Petrovskii’s and Shilov’s sense in [3, 8, 16] and for the pseudodifferential equations with en-
tire analytic symbols in [6]. 

The present work is devoted to the analysis of the property of localization of the regular solutions of Eq. (1) 
with generalized limit values in the form of Gurevich-type generalized functions.  We preliminarily improve the 
estimate for the fundamental solution of the Cauchy problem with respect to the time variable and perform 
an extension of the space of test functions by finite functions required for the correct definition of the equality of 
generalized functions on a set.  The accumulated results are illustrated on a model example. 

1.  Preliminary Information  

Let   N   be the set of all natural numbers, let   Rn   and   Cn  be, respectively, the real and complex spaces of 
dimension  n ,  and let   Z+

n   be the set of all n -dimensional multiindices.  We use the following notation:  i   is 
the imaginary unit;   

   z
ℓ := z1

ℓ1 …zn
ℓ n ,      ℓ := ℓ1 +…+ ℓ n     for      z := (z1,…, zn )∈Cn    and       ℓ := (ℓ1,…,ℓ n )∈Z+

n ;   

 C
∞ (Rn )   is the class of all functions infinitely differentiable on   Rn ;  S   is the Schwartz space of rapidly de-

creasing functions;  L2 (Rn )  is the Lebesgue space of functions square summable on   Rn ,  and  µ(⋅)   is a func-
tion continuously increasing on  [0,+∞)  and such that   

 lim
τ→+∞

µ(τ) = +∞      and      µ(0) = 0 . 
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We put   

 !M (τ) := µ(ξ)dξ
0

τ

∫ ,  τ ≥ 0 .   

In the set  [0,+∞),  the function  !M (⋅)  is increasing, differentiable, and convex.  Moreover,   !M (0) = 0   and 

 
 
lim
τ→+∞

!M (τ) = +∞ . 

Parallel with   !M (⋅),  we consider a similar function   
!Ω(⋅)   constructed according to the function  ω(⋅) ,  

which has the same properties as  µ(⋅) .    
Let   M (x) := !M ( x )   and   Ω(x) := !Ω( x ),   x ∈Rn .  For  α > 0   and  β > 0 ,  we set 

   Sα
β = {ϕ ∈C∞ (Rn ) ∃c > 0, ∃A > 0, ∃δ > 0 ∀k ∈Z+

n , ∀x ∈Rn : ∂x
kϕ(x) ≤ cA k k β k e−δ x 1/α

}, 

   WM
β = {ϕ∈C∞ (Rn ) ∃c > 0, ∃A > 0, ∃δ > 0 ∀k∈Z+

n , ∀x ∈Rn : ∂x
kϕ(x) ≤ cA k k β k e−M (δx )}. 

The space  Wα
Ω   is defined as the set of all elements from the class   C

∞ (Rn )  admitting analytic extensions 
in   Cn  to entire functions such that    

  ∃c > 0, ∃λ > 0, ∃δ > 0 ∀z = x + iy ∈Cn : ϕ(z) ≤ ce−δ x 1/α+Ω(λy). 

In [2, 7], these spaces are endowed with related topologies.   With the indicated topologies, these spaces  
turn into unions of complete perfect countably normed spaces.  In particular, a sequence of elements  

  {ϕν (⋅), ν ∈N}⊂ Sα
β   in the space  Sα

β    

1) is bounded if   

 ∃c > 0, ∃A > 0, ∃δ > 0 ∀k ∈Z+
n , ∀x ∈Rn , ∀ν∈N: ∂x

kϕν (x) ≤ cA k k β k e−δ x 1/α
; 

2) converges to zero (we denote  ϕν
Sα
β

ν→+∞⎯ →⎯⎯⎯ 0)  if it is bounded in this space and regularly conver-
gent, i.e., 

 
  
∀k ∈Z+

n , ∀K ⊂ Rn :∂x
kϕν (x) ⇒

ν→+∞

x∈K
 0  

(here, we speak about uniform convergence with respect to  x   on every compact set   K).   
If  M (⋅)  and  M (⋅)  are functions constructed according to the corresponding  µ(⋅)   and  µ(⋅)   that are dual 

in Young’s sense (see the definition in [4]), then the following topological equalities are  true: 

 F[Wα
M ] = WM

α , F[Sα
β ] = Sβ

α . (2) 
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Here, the operator  F   is continuous in each of these spaces.    
The results obtained in [7] immediately imply that the function   g(⋅)∈C

∞ (Rn )   is a multiplier in the 
space   Φ ∈{Sα

β ,WΩ
β}  only if   

  ∀δ > 0, ∃cδ > 0, ∃Aδ > 0 ∀k ∈Z+
n , ∀x ∈Rn : ∂x

k g(x) ≤ cδAδ
k k β k Eδ (x), (3) 

where   

 Eδ (x) =
eδ x 1/α

, Φ = Sα
β ,

eΩ(δx ) , Φ =WΩ
β .

⎧

⎨
⎪

⎩
⎪

 

Thus, in view of (2) and the equality   

 F[ f ∗ϕ](⋅) = F[ f ](⋅)F[ϕ](⋅), ∀ϕ ∈F[Φ], 

which is true for the convolvers  f ∈F[ ′Φ ]   [1], we conclude that  f   from  F[ ′Φ ]  is a convolver in the 
space  F[Φ]   iff its Fourier transform  F[ f ](⋅)  is a multiplier in  Φ ,  i.e., iff F[ f ](⋅)  satisfies the correspond-
ing condition (3).  Here,  ′Φ   is the space topologically dual to  Φ .    

Let  
 
!M γ (⋅)   be a function dual in Young’s sense to  

 
!Ωγ (⋅)   and let   

 
 
Ωγ (x) := !Ωγ ( x )      and      

 
M γ (x) := !M γ ( x ) ,     x ∈Rn .   

For Eq. (1), we impose the following initial condition: 

 
 
u(t, ⋅)

(Wβ
M γ ′)

t→+0⎯ →⎯⎯⎯⎯ f , f ∈(Wβ
M γ )′ , (4) 

(in this case, we speak about weak convergence in the space  
 
(Wβ

M γ )′ ).   

The following assertion is true [7]:  

In order that the Cauchy problem (1), (4) be correctly solvable and its solution  u(t, ⋅)  belong to the space  

Wβ
M γ ,  β ≥ 1,  it is necessary and sufficient that the initial generalized function  f   from  

 
(Wβ

M γ )′   be a convolv-

er in the space  Wβ
M γ .  In this case, the equality  

 u(t, x) = ( f ∗G)(t, x) ≡ f ,G(t, x −⋅) , (t, x)∈Π , (5) 

holds and the derivatives satisfy the following relations on the set  Π: 

  ∂t u(t, x) = f ,∂t G(t, x − ⋅) , ∂x
k u(t, x) = f ,∂x

k G(t, x − ⋅) , k ∈Z+
n . 
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Here,  G   is the fundamental solution of problem (1), (4), and the action of a generalized function upon a test 
function is denoted by  ⋅ , ⋅ . 

In [7], it was established that   

 G(t, ⋅) = F−1[θt (ξ)](t, ⋅) ,    t > 0,   

where   

 θt (ξ) := e− tPγ (ξ) , (t,ξ)∈Π ,   

and, moreover,  θt (⋅)  belongs to the space  WΩγ

1   for any fixed  t > 0 . 

Thus, in view of relation (2), we arrive at the following assertion:  

Corollary 1.  For any fixed  t > 0,  the fundamental solution  G(t, ⋅)  is an element of the space  W1
M γ . 

To study the properties of the solution  u(t, ⋅)  of the Cauchy problem (1), (4) with respect to the variable  t ,  
it is first necessary to clarify the properties of the fundamental solution  G(t, ⋅)  with respect to this variable.  
Therefore, in the first turn, we get the exact estimates for the derivatives  ∂ξ

k θt (ξ)  by separating, in all cases, the 

dependence on  t .   
To simplify calculations, we consider the case where  n = 1  (the general case   n ∈N   is studied by induc-

tion).  According to the Faà di Bruno formula [5], we obtain  

 
  
∂ξ
k θt (ξ) ≤ k!

i! j!…h!t
pθt (ξ)

p

k

∑
dPγ (ξ)
1!dξ

i d2Pγ (ξ)

2!dξ2

j

…
d ℓPγ (ξ)

ℓ!dξℓ

h

, (t,ξ)∈Π , 

where the operation of summation is carried out over all integer nonnegative solutions of the equation  
  k = i + 2 j +…+ ℓh,  and the number   p = i + j +…+ h .  By using the following estimates from [7]: 

 
dmPγ (ξ)

m!dξm
≤ cAm (a + ξ2 )(γ−m )/2

ln(a + ξ2 )1/2
, 

 
 

p!
i! j!…h! ≤ 2k , 1 ≤ (2e)k

p

k

∑ , 

we find 

 
  
∂ξ
k θt (ξ) ≤ Akk!θt (ξ)

(ctPγ (ξ))
p

i! j!…h! (a + ξ2 )−k /2

p

k

∑  

  
  
≤ Akk!t k /γθt (ξ)

c p(tPγ (ξ))p−k /γ

i! j!…h!
p

k

∑  
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≤ c1A1

kk!t k /γθt /2 (ξ)
supτ>0{τ p−k /γe−τ}

i! j!…h!
p

k

∑  

  ≤ c2A2
kk!t k /γθt /2 (ξ), (t,ξ)∈Π , 

where  A,   c,   Aj ,  and  c j   are positive constants independent of  t ,  x ,  and  k .  
Hence, in view of the relations 

   ∀α > 0 ∃cα > 0 ∀ξ ∈Rn :Pγ (ξ) ≥ cα(a + ξ 2 )(γ−α )/2 , (6) 

for    {k, q}⊂ Z+
nΩ  and  (t, x)∈Π ,  we get 

 
 
xk ∂x

qG(t, x) = (2π)−n e− i(x,ξ) ∂ξ
k (ξqθt (ξ))dξ

Rn
∫  

  
  
≤ Ck

ℓ ∂ξ
ℓ ξq ∂ξ

k−ℓθt (ξ) dξ
Rn
∫

ℓ=0

k

∑  

  
 
≤ c2 Ck

ℓA2
k−ℓ (k − ℓ)!t k−ℓ /γ q!

(q − ℓ)!
ℓ=0

k

∑  

   
  
× ξ q−ℓ e−

cα
2 t ξ γ−α

dξ
Rn
∫  

  
  
≤ c2 Ck

ℓA2
k−ℓ (4cα

−1)
q−ℓ
γ−α t

k−ℓ
γ − q−ℓ

γ−α (k − ℓ)!q!
(q − ℓ)!

ℓ=0

k

∑  

   
  
× sup

τ>0
τ

q−ℓ
γ−α e−τ{ } e−

cα
4 t ξ γ−α

dξ
Rn
∫  

  ≤ cαA
k Bα

q k! q
q

γ−α t
k
γ −

n+ q γ 0
γ−α ∀α ∈(0, γ ). 

Here, the estimated quantities  cα ,  A ,  and  Bα   are positive and independent of  t ,  x ,  k ,  and  q .  In this case,  
A   is also independent of  α   and   

 γ 0 =
1, t ∈(0,1),

γ 0 = 1− α /γ , t ≥ 1.

⎧
⎨
⎪

⎩⎪
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Hence, the following proposition is true: 

Lemma 1.  The function  G(t, ⋅),  t > 0 ,  is infinitely differentiable on the set   Rn   and, in addition,  

  ∃δ > 0 ∀α ∈(0,γ ) ∃cα > 0, ∃Bα > 0, ∀q ∈Z+
n , 

 ∀(t, x)∈Π : ∂x
qG(t, x) ≤ cαBα

q q
q

γ−α t
− n+ q γ0

γ−α e−δ x /t γ . 

Corollary 2.  The fundamental solution  G(t, ⋅)  of the Cauchy problem for Eq. (1) is an element of the 
space  S1

1/(γ−α )   for all  α ∈(0,γ )   and any fixed  t > 0 . 

2.  Localization Principle  

As  t → +0 ,  the solution of the Cauchy problem (1), (4) approaches a generalized function  f   in a sense 
of weak convergence.  However, it is possible that, in a certain domain   Q ⊂ Rn ,  f   coincides with a smooth 
function.  Is it true that a local strengthening of convergence of the indicated solution occurs in the indicat-
ed case?  We now try to answer this question.  

Note that the notion of equality of generalized functions on the set  Q  ⊂ Rn  requires the presence of finite 
functions in the corresponding space of test functions [2]:  

The elements  f   and  g   from the space  ′Φ   are equal on the set  Q   provided that 

 f − g,ϕ(⋅) = 0 ∀ϕ(⋅)∈Φ, suppϕ ⊂ Q . 

By definition, the space  Wβ
M γ   is formed solely by entire analytic functions. Therefore, it is first necessary 

to restrict, in a proper way, the corresponding space   
 
(Wβ

M γ )′   of initial data of the Cauchy problem (1), (4) 

by complementing the space  Wβ
M γ   by smooth finite functions.  

Estimate (6) guarantees the validity of the embedding   

 WΩγ

β ⊂ S1/(γ−α )
β    

for  β > 0   and  α ∈(0, γ ) .  Hence, in view of (2), we arrive at the following chain of continuous embeddings:  

   Wβ
M γ ⊂ Sβ

1/(γ−α ) ⊂ Sβ
r ⊂ S ⊂ L2 (Rn )⊂ ′S ⊂ (Sβ

r ′) ⊂ (Sβ
1/(γ−α ) ′) ⊂ (Wβ

M γ )′  

for all  β > 0,  α ∈(0, γ ),  and  (γ − α)−1 ≤ r .  In view of the presence of finite functions in the space  Sα
β   

for  β > 1  [2], this yields the required restrictions of the space of initial data: 

 
 
′S ⊂ (Sβ

r ′) ⊂ (Sβ
1/(γ−α ) ′) ⊂ (Wβ

M γ )′ ,      β > 0,     1 < (γ − α)−1 ≤ r . 
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Two following assertions are true:    

Theorem 1.  Let  β ≥ 1  and let the parameters  α ∈(0, γ )  and  r > 0   be such that 

 1 < (γ − α)−1 ≤ rγ
γ +1 . (7) 

If a generalized function  f ∈(Sβ
r ′)   is equal to zero on a set   Q ⊂ Rn ,  then the corresponding function  u(t, ⋅) , 

t > 0,  given by equality (5) converges to zero together with all its derivatives  ∂x
k u(t, x)   as  t → +0   uniformly 

in the variable  x   on every compact set   K ⊂ Q .  

Proof.  Let   K ⊂ K1 ⊂ Q ,  where   K1  is a compact set from   Rn  such that 

   ∀x ∈K, ∀ξ ∈Rn \K1 : x − ξ ≥ b > 0 . (8) 

Consider a finite function  η(⋅)∈Sβ
1/(γ−α )   whose support is located in  Q   such that  η(ξ) = 1,   ξ ∈K1 .   

We set  ν(⋅) := 1− η(⋅).  Since the operations of multiplication and ordinary shift of the argument are defined in 
the spaces  Sα

β ,  Corollary 2 implies that 

 
 
{η(⋅)∂x

k G(t, x − ⋅), ν(⋅)∂x
k G(t, x − ⋅)}⊂ Sβ

1/(γ−α ) , (t, x)∈Π . 

Thus, for all   k ∈Z+
n   and  (t, x)∈Π ,  we arrive at the representation  

 ∂x
k u(t, x) = f ,η(⋅)∂x

k G(t, x − ⋅) + f ,ν(⋅)∂x
k G(t, x − ⋅) . 

In view of the equality  f = 0   valid on  Q   and the relation 

  supp(η(⋅)∂x
k G(t, x − ⋅))⊂ Q , 

this yields 

 ∂x
k u(t, x) = tα1 /(γ−α ) f ,ω t ,x

k (⋅) , α1 > 0, (t, x)∈Π , 

where  ω t ,x
k (⋅) := t−α1 /(γ−α )ν(⋅)∂x

k G(t, x − ⋅) .  
Hence, in order to prove the theorem, it is sufficient to establish the uniform boundedness of the fami-

ly  ω t ,x
k (⋅)  in the space  Sβ

r   with respect to the parameters   0 < t ≪1  and   x ∈K ,  i.e., to prove the following 
estimate: 

  ∂ξ
qω t ,x

k (ξ) ≤ cA q q r q e−δ ξ 1/β
∀q ∈Z+

n , (9) 
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where the positive constants  c , A , and δ   are independent of  t ,  x ,  ξ ,  and  q .  Since  ω t ,x
k (ξ) = 0  for   ξ ∈K1 ,  

it is sufficient to establish estimate (9) only for    ξ ∈Rn \K1. 
By using the Leibnitz formula of differentiation of the product of functions, assertion of Lemma 1, and the 

fact that  η(⋅)   belongs to  Sβ
1/(γ−α ) ,  we find  

 ∂ξ
qω t ,x

k (ξ) ≤ t
−

α1
γ−α ∂x−ξ

k+qG(t, x − ξ)
⎧
⎨
⎪

⎩⎪
 

   
 
+ Cq

ℓ ∂ξ
q−1 η(ξ) ∂x−ξ

ℓ+k G(t, x − ξ)
ℓ=0

q

∑
⎫
⎬
⎪

⎭⎪
 

  ≤ cαt
− α1+n+ k+q

γ−α e−δ x−ξ /t γ Bα
k+q k + q

k+q
γ−α

⎧
⎨
⎩

 

   
 
+ Cq

ℓ

ℓ=0

q

∑ A q−ℓ Bα
k+q q − ℓ

q−ℓ
γ−α k + ℓ

k+ℓ
γ−α

⎫
⎬
⎪

⎭⎪
 

  ≤ cB k+q k + q
k+q
γ−α t

− α1+n+ k+q
γ−α e−δ x−ξ /t γ  

  ≤ cB k+q k + q
k+q
γ−α sup

t∈(0,1)
t
− α1+n+ k+q

γ−α e
− δb

2 t γ{ }e− δ
2 x−ξ  

  
 
≤ c1B1

k+q k + q
k+q (1+γ )
γ ( γ−α ) sup

x∈Κ
{eδ1 x }e−δ0 ξ , 

     0 < t ≪1, x ∈K, ξ ∈Rn \K1, {k,q}⊂ Z+
n . 

Thus, estimate (9) now becomes obvious.  Theorem 1 is proved.  

Theorem 2.  Let  γ > 1,  let  α ∈(γ −1,γ −1/γ ],  and let r ≥ γ +1
γ (γ − α) .  If a generalized function  f ∈(Sβ

r ′) ,  

β ≥ 1,  coincides, on a set   Q ⊂ Rn ,  with a function  g(⋅)  continuously differentiable on Q  up to the or-
der   q0 ∈Z+

n , inclusively, then the corresponding function u(t, ⋅) = f ,G(t, x −⋅)   converges, together with all 
its derivatives  ∂x

k u(t, x) ,  k ≤ q0 ,  to  ∂x
k g(x)  as  t → +0   uniformly in the variable  x   on every compact 

set   K ⊂ Q .    

Proof.  First, we note that the fact that  α   belongs to  γ −1, γ −1
γ

⎛
⎝⎜

⎤
⎦⎥
  is equivalent to the condition 

 1 < (γ − α)−1 ≤ γ  
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and 

 r ≥ γ +1
γ (γ − α) ⇔ (γ − α)−1 ≤ rγ ≤ (γ +1) . 

Therefore, the conditions imposed on the parameters  α   and  r  in the analyzed theorem guarantee the va-
lidity of condition (7) from Theorem 1 for these parameters.   

We now use the quantities   K ,   K1,  η(⋅) ,  and  ν(⋅)  from the proof of the previous assertion. 
It follows from the equalities  f − g = 0  on  Q   and  νf = 0   on   K1,  the assertion of Theorem 1, and the 

representation 

 ∂x
ku(t, x) = η( f − g),∂x

kG(t, x − ⋅) + νf ,∂x
kG(t, x − ⋅) + ηg,∂x

kG(t, x − ⋅)  

that, in order to prove Theorem 2, it suffices to establish the following limit relation:  

 
 
It
k (x) := ηg, ∂x

k G(t, x − ⋅) ⇒
t→+0

x∈K
∂x
k (ηg)(x) . 

In view of the regularity of the functional  ηg   and the equality 

 ∂x
k G(t, x − ξ) = (−1) k ∂ξ

k G(t, x − ξ) , 

as a result of integration by parts, we arrive at the representation   

 
 
It
k (x) = G(t, x − ξ)∂ξ

k (ηg)(ξ)dξ
Rn
∫ , k ≤ q0 . 

By using this representation and the equality  

 
 

G(t, x − ξ)dξ = θt (0)
Rn
∫ , t > 0 , 

for  (t, x)∈Π   and  k ≤ q0 , we find 

 It
k (x)− ∂x

k (ηg)(x)  

  
  
= G(t, x − ξ)(∂x

k (ηg)(x)− ∂ξ
k (ηg)(ξ))dξ

Rn
∫ −O(t )∂x

k (ηg)(x)  

  
 
≤ G(t,ζ) ∂x−ζ

k (ηg)(x − ζ)− ∂x
k (ηg)(x) dζ

Rn
∫  
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   + O(t ) ∂x
k (ηg)(x) , 

where   

 O(t ) := 1− θt (0) →
t→+0

0 .   

The function  ∂x
k (ηg)(x)   is continuous and   supp(∂x

k (ηg))⊂ Q .  Therefore, 

 (i) 
 
sup
x∈K

∂x
k (ηg)(x) = N1 < +∞ ; 

 (ii) 
  

sup
x∈K, ζ∈Rn

∂x−ζ
k (ηg)(x − ζ)− ∂x

k (ηg)(x) = N2 < +∞;   

 (iii) 
  ∀ε > 0 ∃δ0 > 0 ∀x ∈K, ∀ζ ∈Rn , x − ζ − x = ζ < δ0 : ∂x−ζ

k (ηg)(x − ζ)− ∂x
k (ηg)(x) < ε . 

Thus, in view of the assertion of Lemma 1, for   x ∈K ,  t ∈(0, 1) ,  and  k ≤ q0 ,  we get 

 
 

G(t,ζ) ∂x−ζ
k (ηg)(x − ζ)− ∂x

k (ηg)(x) dζ
Rn
∫  

  ≤ ε G(t,ζ) dζ
ζ <δ0

∫ + N2 G(t,ζ) dζ
ζ ≥δ0

∫  

  ≤ ct
− n

γ−α ε e−δ ζ /t γ dζ
ζ <δ0

∫
⎛

⎝
⎜
⎜

+ N2 e−δ ζ /t γ dζ
ζ ≥δ0

∫
⎞

⎠
⎟
⎟

 

  
 
≤ ct

n(γ− 1
γ−α )

ε e−δ ζ dζ
Rn
∫  

 

+ cN2t
− n

γ−α 2t γ
δδ0

⎛
⎝⎜

⎞
⎠⎟
n+1

sup
τ>0

{τn+1e−τ} e−
δ
2 ζ /t γ dζ

ζ ≥δ0
∫  

  
  
≤ (c0ε + c1δ0

−1−nt γ ) e−
δ
2 ζ dζ ≡ ′c0ε + ′c1δ0

−1−nt γ

Rn
∫ . 

Note that the quantity  t γ   is infinitesimal at the point  t = 0 .  Hence, for any  δ0 ∈(0, 1),  one can find  
t0 ∈(0, 1)   such that, for all  t ∈(0, t0 ) ,  the inequality  δ0

1+n ≥ t γ /2   is true.  Thus,  

  ∀ε ∈(0, 1) ∃t0 ∈(0,ε), ∀t ∈(0,t0 ) ∀k ∈Z+
n , k ≤ q0 : 

  
 
sup
x∈K

It
k (x)− ∂x

k (ηg)(x) ≤ ′c0ε + ′c1ε
γ /2 + N1O(ε). 
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Therefore, in view of the equality  ηg = g   on   K, we arrive at the assertion of the theorem.  The theorem 
is proved.   

3.  Example 1.  Consider the Cauchy problem for Eq. (1) with  n = 1,  γ = 3/2 ,  and an initial generalized 

function  f   from the corresponding space   (W1
M γ )′ .  The action of this generalized function upon the test func-

tions  ϕ(⋅)∈W1
M γ   is specified with the help of the following ordinary function: 

 f (x) =
x −1/2 , 0 < x < 1,

e− x2
, x ≥ 1,

⎧

⎨
⎪

⎩
⎪

 

according to the rule: 

 f ,ϕ(⋅) = ϕ(ξ)
ξ

dξ
ξ <1
∫ + e−ξ

2
ϕ(ξ)dξ

ξ ≥1
∫ . 

It is clear that this equality enables us to continuously extend the functional  f   onto the space  Sβ
1/(γ−α ) ,  

α ∈(0, γ ).  Moreover,  f   is a convolver in  Sβ
1/(γ−α ) .  Indeed, for any  ϕ(⋅)∈Sβ

1/(γ−α ) ,  α ∈(0,γ ) ,  the function   

 ψ(x) := f ,ϕ(x − ⋅) = ϕ(x − ξ)
ξ

dξ
ξ <1
∫ + e−ξ

2
ϕ(x − ξ)dξ

ξ ≥1
∫  

is infinitely differentiable on   R   and its derivatives satisfy the estimates  

 ψ (k ) (x) ≤ ϕ(k ) (x − ξ)
ξ

dξ
ξ <1
∫ + e−ξ

2
ϕ(k ) (x − ξ) dξ

ξ ≥1
∫  

  ≤ cAkkβk e−δ x−ξ γ−α

ξ
dξ

ξ <1
∫ + e−ξ

2−δ x−ξ γ−α
dξ

ξ ≥1
∫

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

  ≤ c0A
kkβke−δ0 x γ−α dξ

ξξ <1
∫ + e−(ξ

2−δ1 ξ γ−α ) dξ
ξ ≥1
∫

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

  ≤ ′c0A
kkβke−δ0 x γ−α

 

for all   k ∈Z+ ,   x ∈R ,  and  α ∈(0,γ ) . 

In a similar way, we conclude  that  f   is also a convolver in the space  W1
M γ .  
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Hence, the corresponding function  

 u(t, x) = G(t, x − ξ)
ξ

dξ
ξ <1
∫ + e−ξ

2
G(t, x − ξ)dξ

ξ ≥1
∫ , (t, x)∈Π , 

is an ordinary solution of Eq. (1) satisfying the corresponding initial condition (4) in a sense of weak conver-
gence in the space   (W1

M γ )′ .  However, the functional  f   in the space  (S1
5/2 ) ′   coincides with the smooth func-

tions  

 g0 (⋅) = ⋅ −1/2       and      g1(⋅) = e− (⋅)2    

on each set   Q0 = (−1, 0)∪ (0, 1)  and   Q1 = Rn\Q0 ,  respectively.  Therefore, according to the assertion of Theo-
rem 2, the limit relations 

 
 
∂x
k u(t, x) ⇒

t→+0

x∈K⊂Q0
g0
(k ) (x), ∂x

k u(t, x) ⇒
t→+0

x∈K⊂Q1
g1
(k ) (x) 

hold for all   k ∈Z+   and every compact set   K   from the corresponding set  Qj . 

CONCLUSIONS 

By analyzing the proofs of Theorems 1 and 2, we can make the following conclusions:  

The localization principle for the solution of the Cauchy problem for Eq. (1) with generalized limit value 
from the space  

 
(Wβ

M γ )′ ,  β ≥ 1,  can be successfully established if the corresponding space  Wβ
M γ   of test func-

tions admits an extension by smooth finite functions such that the fundamental solution of the analyzed problem 
is strongly bounded for   0 < t ≪1. 
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