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NONLOCAL (IN TIME) PROBLEM FOR THE EVOLUTIONARY EQUATIONWITH
FRACTIONAL DIFFERENTIAL OPERATOR

V. V. Horodets’kyi1;2, R. S. Kolisnyk3;4, and N. M. Shevchuk5;6 UDC 517.98

We establish the correct solvability of a multipoint nonlocal (in time) problem for the evolutionary equa-
tion with operator of fractional differentiation and an initial function, which is an element of the space of
generalized functions of the distribution type. The analytic representation of the solution is presented. We
also analyze the behavior of the solution in the case of unlimited growth of the time variable (stabilization
of the solution).

Various classical function spaces (e.g., Sobolev spaces, spaces of analytic functions, spaces of infinitely dif-
ferential functions, and spaces of Schwartz distributions) can be understood as positive and negative spaces with
respect to L

2

constructed either on the basis of functions of the operator of differentiation or of multiplication by
an independent variable or as projective and inductive limits of these spaces [1]. In the cited work, the nonlocal
multipoint (in time) problem was investigated in the half space t > 0 for the differential-operator equation
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D d=dx; and ˛ 2 .1;C1/nf2; 3; 4; : : :g is the fractional power of modulus of the operator
of differentiation. This operator can be regarded as an analog of the Weyl operator of fractional differentiation,
which is used in the theory of periodic functions [2, 3]. The analyzed problem is a generalization of the Cauchy
problem in the case where the initial condition u.t; �/j
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D f is replaced by the condition
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D 0; we get the Cauchy problem). This condition is treated either in
the classic sense or in the weak sense if f is a generalized function, i.e., in a sense of the limit relation
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for any function ' from the pivot space (here, hf; 'i denotes the action of a functional f on a test function). This
problem is nonlocal in time and belongs to the class of multipoint problems for differential-operator equations
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(for a survey of works devoted to nonlocal problems for differential-operator equations and partial differential
equations, see, e.g., [4]).

In the present paper, we establish correct solvability of the indicated problem with initial function, which is an
element of the space of generalized functions of the distribution type, and present the analytic representation of the
solution u.t; x/ as t ! C1 (stabilization of the solution). It is shown that every pseudodifferential operator (in
the case of one independent variable) constructed according to a homogeneous function of order ˛; which is not
differentiable at the point 0; coincides with the restriction of the operator A to a certain locally convex topological
space, which is a projective limit of Banach spaces continuously embedded into each other.

1. Spaces of Test and Generalized Functions

1.1. The Space ˆ˛: Let ˛ be a fixed number from the set .1;C1/ n f2; 3; 4; : : :g; let ˛
0
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Moreover (see [5, pp. 103–110]), ˆ
˛

is a complete perfect countably normed space with the topology of projective
limit of Banach spaces
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By induction, we can show that the derivatives of this function have the form

'

.k/

.x/ D P

k

.x/

�
1C x

2

��.kC.Œ˛çC1/=2/

; x 2 R; k 2 ZC;

whereP
k

is a polynomial of degree k: This implies that all norms k'k
p

; p 2 ZC; are finite.
A set B ⇢ ˆ

˛

is called bounded if

8p 2 ZC 9c
p

> 0 8' 2 BW k'k
p

 c

p

(i.e., each norm of the space ˆ
˛

is bounded on the set B by its constant).
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A sequence of functions f'
⌫

; ⌫ � 1g ⇢ ˆ

˛
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˛

to a function ' 2 ˆ
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as ⌫ ! C1 if k'
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�'k
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!
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Note that a continuous operation of shift of the argument T
⇠

W'.x/! '.x C ⇠/; ' 2 ˆ
˛

and the operation of
differentiation are also defined in the spaceˆ

˛

(see [5, pp. 108–110]). Sinceˆ
˛

is a perfect space, according to the
general results of the theory of perfect spaces [6, pp. 171–172], the operation of shift of the argument in the space
ˆ

˛

is not only continuous but also infinitely differentiable (i.e., limit relations of the form .'.xCh/�'.x//h�1 !
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0
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˛
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1.2. The Space ‰˛: Since functions from the space ˆ
˛

are absolutely integrable on R; the operation of
Fourier transformation F can be defined for these functions as follows:
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we denote the Fourier transform of the space ˆ
˛
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; then F Œ'ç is an infinitely differentiable function on R n f0g:
Note that the function F Œ'ç can be not differentiable at the point � D 0: Thus, the function '.x/ D .1Cx2/�1
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These examples characterize elements from ˆ

˛

as Fourier preimages of functions nonsmooth at the point 0:
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(iv) The Fourier transformation continuously and bijectively maps ˆ
˛

onto ‰
˛

:

(v) Functions from the space ‰
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In this case, ‰
˛

is a complete countably normed space, ‰
˛

D
\1

pD0
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is the complement of the
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:

1.3. The Space ˆ0
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weak convergence. Since the topology of projective limit of the Banach spaces ˆ
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Thus, if f 2 ˆ0
˛

; then f 2 ˆ0
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for some p 2 ZC: The least of these p is called the order of f and, moreover,
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1.4. Convolution in ˆ0
˛: If f 2 ˆ0

˛

; ' 2 ˆ
˛

; then the convolution f ⇤ ' exists and is given by the formula
(see [5, pp. 112–118])
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moreover, f ⇤ ' is an ordinary function infinitely differentiable on R (here, hf
⇠

; T�x

L'.⇠/i denotes the action of a
functional f upon a test function T�x

L'.⇠/ regarded as a function of the argument ⇠).
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:

The Fourier transform of a generalized function f 2 ˆ0
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is defined by the formula
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In this case, F Œf ç is a multiplicator in the space ‰
˛

(see [7, p. 219]).
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2. Fractional Differentiation in the Space ˆ˛

Consider an operator

A D jD
x

j˛ D jiD
x

j˛; D

x

D d=dx;

which is a fractional power of the modulus of the operator of differentiation. The operator A is a nonnegative
self-adjoint operator in the Hilbert space L
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is a self-adjoint operator in L
2

.R/ with the domain
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To substantiate relation (1), we prove the following statement:
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Let � W j� j � 1: Then
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Further, we use the following inequality from [7, p. 206]:
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; � ¤ 0; k 2 ZC (see Property 5 in Sec. 1), we arrive at the
inequality
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˛

3  ! � 2 ‰
˛

is bounded because it maps every bounded set from the space
‰
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into a bounded set from the same space (this property is proved by using the scheme described above). Note
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that, in the space‰
˛

; as a space with the first axiom of countability, the class of linear bounded operators coincides
with the class of linear continuous operators. This implies that the function �.�/; � 2 R; is a multiplicator in the
space ‰

˛

:

Let O
A WD Aj

ˆ˛
be the restriction of the operator A to ˆ

˛

: By Lemma 1, the operator O
A maps ˆ

˛

into ˆ
˛

:

Moreover, it is a linear operator and coincides on ˆ
˛

with a pseudodifferential operator F�1

Œ�.�/F ç constructed
on the basis of the function symbol �.�/ D j� j˛; � 2 R:

Remark 1. If a.�/; � 2 R; is a homogeneous function of order ˛ 2 .1;C1/ n f2; 3; 4; : : :g continuous on
R and infinitely differentiable on R n f0g; then it is known that a.�/ has the form a.�/ D cj� j˛; c D const:
According to the reasoning presented above, in the case of one independent variable, every pseudodifferential
operator constructed on the basis of the function a.�/; � 2 R; coincides with the operator O

A D Aj
ˆ˛
:

3. Nonlocal (in Time) Problem

Consider an evolutionary equation

@u.t; x/

@t

C O
Au.t; x/ D 0; .t; x/ 2 .0;C1/ ⇥R ⌘ �; (2)

where O
A is the operator of fractional differentiation in the space ˆ

˛

considered in Sec. 2.
A solution of Eq. (2) is understood as a function u.t; x/; .t; x/ 2 � with the following properties:

(i) it is continuously differentiable with respect to the variable t I
(ii) u.t; �/ 2 ˆ

˛

for any t > 0I
(iii) u.t; x/; .t; x/ 2 �; satisfies Eq. (2).

For Eq. (2), we now formulate the nonlocal (in time) multipoint problem as follows:
To find the solution of Eq. (2) satisfying the condition

�u.0; x/ � �

1
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1

; x/ � : : : � �

m

u.t

m

; x/ D f .x/; x 2 R; f 2 ˆ
˛

; (3)

where u.0; x/ D lim
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u.t; x/; x 2 R; m 2 N; f�;�
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; : : : ;�

m

g ⇢ .0;C1/; ft
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; : : : ; t
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g ⇢ .0;C1/ are fixed

numbers, 0 < t
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< : : : < t

m

< C1; and

� >

mX

kD1

�

k

:

We seek the solution of problem (2), (3) by using the Fourier transform in the form

u.t; x/ D F

�1

Œv.t; �/ç:

For the function vW� ! R; we obtain the following problem with a parameter � :

dv.t; �/

dt

C j� j˛v.t; �/ D 0; .t; �/ 2 �; (4)
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�v.0; �/ �
mX

kD1
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k

v.t

k

; �/ D Q
f .�/; � 2 R; (5)

where Q
f .�/ D F Œf ç.�/: A solution of problem (4), (5) is given by the formula

v.t; �/ D Q
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R
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is the solution of problem (2), (3).
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ŒQ.t; �/ç; where
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1

.t; �/Q

2

.�/; Q

1

.t; �/ D exp f�t j� j˛g ;

Q

2

.�/ D
 
� �

mX

kD1

�

k

exp f�t
k

j� j˛g
!�1

:

Reasoning formally, we get
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Z
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Indeed,

u.t; x/ D .2⇡/

�1

Z

R

Q.t; �/

0

@
Z

R

f .⇠/e

i�⇠

d⇠

1

A
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D
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@
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A
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D
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The validity of transformations performed above follows from the properties of the functionQ.t; �/ regarded
as a function of the variable �; which are presented in what follows.

Lemma 2. For fixed t > 0; the function Q.t; �/ is infinitely differentiable with respect to the variable � 2
R n f0g: Its derivatives satisfy the estimates
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jDs

�

Q.t; �/j  b

s

t

�sj� j!s�s exp f�t j� j˛g ; � ¤ 0; s 2 N; (6)

where the constant b
s

D b

s

.˛/ > 0 is independent of t;

� D
8
<

:
0 for 0 < t  1;

1 for t > 1;

!

s

D
8
<

:
˛ for � ¤ 0; j� j < 1;
˛s for j� j � 1:

Proof. To prove the lemma, we use the Faa di Bruno formula of differentiation of a composite function:

D

s

�

F.g.�// D
sX

QmD1

d

Qm
F.g/

dg

Qm
X

sä

Qm
1

ä : : : Qm
l

ä

⇥
✓
d

d�

g.�/

◆ Qm1
✓
1

2ä

d

2

d�

2

g.�/

◆ Qm2

: : :

 
1

lä

d

l

d�

l

g.�/

! Qml

; (7)

where the index of summation runs over all solutions of the equation in nonnegative integers,

Qm
1

C 2 Qm
2

C : : :C l Qm
l

D s; Qm
1

C Qm
2

C : : :C Qm
l

D Qm:

In this formula, we set F D e

g

; g D �t j� j˛: Then

jDs

�

exp f�t j� j˛gj  e

�t j� j˛
sX

QmD1

X
sä

Qm
1

ä : : : Qm
l

ä

ƒ; � ¤ 0; s 2 N;

where

ƒ WD
ˇ̌
ˇ̌
ˇ̌

✓
d

d�

��t j� j˛�
◆ Qm1

✓
1

2ä

d

2

d�

2

g.�/

◆ Qm2

: : :

 
1

lä

d

l

d�

l

g.�/

! Qml

ˇ̌
ˇ̌
ˇ̌ ; � ¤ 0:

Since ˛ > 1; the inequalities

˛.˛ � 1/.˛ � 2/ : : : .˛ � .l � 1//  ˛.˛ C 1/ : : : .˛ C l/  ˛ � 2˛ � 3˛ : : : l˛ D ˛

l

lä

are true. By using the last inequality, we arrive at the following estimate for ƒ:

ƒ  t

Qm1
˛

Qm1 j� j.˛�1/ Qm1
t

Qm2
˛

2 Qm2 j� j.˛�2/ Qm2
: : : t

Qml
˛

l Qml j� j.˛�l/ Qml

D t

Qm1C:::C Qml
˛

Qm1C2 Qm2C:::Cl Qml j� j˛. Qm1C:::C Qml /�. Qm1C2 Qm2C:::Cl Qml /
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D t

Qm
˛

sj� j˛ Qm�s

; � ¤ 0:

Hence,

jDs

�

Q

1

.t; �/j D jDs

�

exp f�t j� j˛gj

 ˛

s

sä

sX

QmD1

t

Qmj� j˛ Qm�s exp f�t j� j˛g

 c

s

t

�sj� j!s�s exp f�t j� j˛g ; � ¤ 0; (8)

where c
s

D c

s

.˛/ > 0;

� D
8
<

:
0 for 0 < t  1;

1 for t > 1;

and !

s

D
8
<

:
˛ for � ¤ 0; j� j < 1;
˛s for j� j � 1:

By using the Leibnitz formula of differentiation of the product of two functions, we get

D

s

�

Q.t; �/ D D

s

�

.Q

1

.t; �/Q

2

.�// D
sX

pD0

C

p

s

Q

.p/

1

.t; �/D

s�p

�

Q

2

.�/:

In our subsequent analysis, we also use relation (7) with F D '

�1

; ' D R; where

R.�/ D � �
mX

kD1

�

k

exp f�t
k

j� j˛g D Q

�1

2

.�/:

ThenQ
2

.�/ D F.'/ D R

�1 and

jDs

�

Q

2

.�/j D
ˇ̌
ˇ̌
ˇ

sX

QmD1

d

Qm

dR

Qm R

�1

X
sä

Qm
1

ä : : : Qm
l

ä

⇥
✓
d

d�

R.�/

◆ Qm1

: : :

 
1

lä

d

l

d�

l

R.�/

! Qml

ˇ̌
ˇ̌
ˇ̌ ; � ¤ 0; s 2 N:

Let j� j � 1: In view of the form of the function R and estimate (8), we obtain

ˇ̌
ˇ̌ 1
j ä

d

j

d�

j

R.�/

ˇ̌
ˇ̌  1

j ä

mX

kD1

�

k

ˇ̌
ˇ̌ d

j

d�

j

e

�tk j� j˛
ˇ̌
ˇ̌

 c

j

j ä

mX

kD1

�

k

t

�j

k

j� j j̨�j

e

�tk j� j˛
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 c

j

mX

kD1

�

k

t

�j

k

t

j

k

j� j�j ⌘ ˇ

j

j� j�j

; j 2 f1; : : : lg

✓
here, we have used the inequality

j� j j̨ expf�t
k

j� j˛g  j ä

t

j

k

; j 2 f1; : : : ; lg
◆
:

Thus, if j� j � 1; then the following estimate is true:

Å

0

WD
ˇ̌
ˇ̌
ˇ̌

✓
d

d�

R.�/

◆ Qm1

: : :

 
1

lä

d

l

d�

l

R.�/

! Qml

ˇ̌
ˇ̌
ˇ̌

 ˇ

Qm1

1

j� j� Qm1
ˇ

Qm2

2

j� j�2 Qm2
: : : ˇ

Qml

l

j� j�l Qml

 ˇ

Qm1C:::C Qml j� j�. Qm1C2 Qm2C:::Cl Qml / D ˇ

Qmj� j�s

;

where ˇ D maxfˇ
1

; : : : ; ˇ Qmg: If � ¤ 0; j� j < 1; then
ˇ̌
ˇ̌ 1
j ä

d

j

d�

j

R.�/

ˇ̌
ˇ̌  c

j

t

�j

m

j� j�j exp f�t
1

j� j˛g  Qc
j

j� j�j

; j 2 f1; : : : ; lg

(here we have used the inequality 0 < t
1

< : : : < t

m

). Thus, Å  ˇ

Qmj� j�s

:Moreover,

d

Qm

dR

Qm R

�1 D .�1/ Qm QmäR

�. QmC1/

:

Since expf�t
k

j� j˛g  1 8� 2 R; k 2 f1; : : : ; mg; we get

� �
mX

kD1

�

k

exp f�t
k

j� j˛g � � �
mX

kD1

�

k

:

By the condition,

� >

mX

kD1

�

k

:

Hence,

R

�1

.�/ 
 
� �

mX

kD1

�

k

!�1

⌘ ˇ

0

> 0;

ˇ̌
ˇ̌
ˇ
d

Qm

dR

Qm R

�1

ˇ̌
ˇ̌
ˇ  ˇ

QmC1

0

Qmä:
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By using the last inequalities, we obtain

jDs

�

Q

2

.�/j  sä

sX

QmD1

ˇ

QmC1

0

ˇ

Qm Qmäj� j�s ⌘ Qc
s

j� j�s

; � ¤ 0: (9)

Therefore [see (8) and (9)],

jDs

�

Q.t; �/j 
sX

pD0

C

p

s

t

�pj� j!p�p Q
C

s�p

c

p

j� j�.s�p/ expf�t j� j˛g

 b

s

t

�sj� j!s�s exp f�t j� j˛g ; � ¤ 0; s 2 N:

Lemma 2 is proved.

Remark 2. In view of estimates (6) and (8), we get fQ
1

.t; �/;Q.t; �/g ⇢ ‰

˛

for every t > 0: This fact and
the boundedness of the functionQ

2

on R also imply thatQ
2

is a multiplicator in the spaceQ
2

:

Remark 3. Reasoning similarly, we conclude that, for t > 1; the derivatives of the function

Q

⇣
t; t

�1=˛

�

⌘
D exp f�j� j˛g

 
� �

mX

kD1

�

k

exp
¶�t�1

t

k

j� j˛·
!�1

satisfy the inequalities

ˇ̌
ˇDs

�

Q

⇣
t; t

�1=˛

�

⌘ˇ̌
ˇ  L

s

j� j!s�s exp f�j� j˛g ; � ¤ 0; s 2 N; (10)

where the constants L
s

> 0 are independent of t: If 0 < t  1; then

ˇ̌
ˇDs

�

Q

⇣
t; t

�1=˛

�

⌘ˇ̌
ˇ  L

0
s

t

�sj� j!s�s exp f�j� j˛g ; � ¤ 0; s 2 N: (11)

We now consider a function

G.t; x/ D .2⇡/

�1

Z

R

Q.t; �/e

�ix�

d� D F

�1

ŒQ.t; �/ç:

It follows from Remark 2 that

G.t; �/ 2 ˆ
˛

D F

�1

Œ‰

˛

ç

for every t > 0; i.e.,

jG.t; x/j  c

k

.t/.1C jxj/�.1CŒ˛çCk/

; .t; x/ 2 �; k 2 ZC:

In estimates for the function G.t; x/ and its derivatives (with respect to the variable x), we now separate the
dependence on the parameter t:
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Lemma 3. The function G.t; x/; .t; x/ 2 �; and its derivatives (with respect to the variable x) satisfy the
estimates

ˇ̌
ˇDk

x

G.t; x/

ˇ̌
ˇ  c

k

t

�.k/

⇣
t

1=˛ C jxj
⌘�.1CŒ˛çCk/

; k 2 ZC; (12)

where the constants c
k

> 0 are independent of t;

�.k/ D
8
<

:
�..˛ C .˛ � 1/.Œ˛çC k//=˛/ for 0 < t  1;

Œ˛ç=˛ for t > 1:

Proof. Let k D 0: We now perform the change of variable of integration � D t

�1=˛

y and obtain the
following representation for the function G:

G.t; x/ D .2⇡/

�1

t

�1=˛

Z

R

Q

⇣
t; t

�1=˛

y

⌘
exp

¸
�i t�1=˛

xy

π
dy D t

�1=˛

G

0

.t; z/;

where

G

0

.t; z/ D .2⇡/

�1

Z

R

Q

⇣
t; t

�1=˛

y

⌘
expf�izygdy; z D t

�1=˛

x:

Further, we assume that t > 1: If z ¤ 0; then, as a result of integration by parts s D 1 C Œ˛ç times, we
represent G

0

in the form

G

0

.t; z/ D .2⇡/

�1 lim
"!C0

Z

jyj�"

Q

⇣
t; t

�1=˛

y

⌘
e

�izy

dy

D .2⇡/

c

s

z

s

lim
"!C0

2

64
Z

jyj�"

D

s

y

Q

⇣
t; t

�1=˛

y

⌘
e

�izy

dy C r."; z/

3

75;

where the symbol r."; z/ denotes the expression located outside the integral, which consists of terms of the form
D

l

y

Q.t; t

�1=˛

y/e

�izy

; 0  l  s � 1; with values at the points y D " and y D �": In view of estimates (10), we
obtain the following inequalities for y ¤ 0; jyj < 1:

ˇ̌
ˇDl

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ  L

s

jyj˛�l

; l 2 f1; : : : ; s � 1g; s D 1C Œ˛ç;

ˇ̌
ˇQ

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ 

 
� �

mX

kD1

�

k

!�1

and, in addition, ˛ � l � ˛ � Œ˛ç D f˛g: This implies that lim
"!C0

r."; z/ D 0 at every point z 2 R n f0g: At
infinity, the indicated terms located outside the integral become equal to zero because

lim
y!˙1

jDl

y

Q.t; t

�1=˛

y/j D 0; l 2 f0; 1; : : : ; s � 1g:
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By using the estimates for the derivatives of the functionQ.t; t�1=˛

y/ [see (10)], we find

jG
0

.t; z/j 
QQc
s

jzjs
C1Z

0

y

!s�s exp f�y˛g dy

D
QQc
s

jzjs

2

4
1Z

0

y

˛�s exp f�y˛g dy C
C1Z

1

y

˛s�s exp f�y˛g dy
3

5
:

The integrand y˛�s expf�y˛g has an integrable singularity at the point y D 0 because ˛ � s D ˛ � .1C Œ˛ç/ D
f˛g � 1: Hence,

jG
0

.t; z/j  cjzj�.1CŒ˛ç/

; z ¤ 0; t > 1; (13)

and the constant c > 0 is independent of t: Since

ˇ̌
ˇQ

2

.t

�1=˛

y/

ˇ̌
ˇ 

 
� �

mX

kD1

�

k

!�1

8t > 0; y 2 R;

we get

jG
0

.t; z/j  .2⇡/

�1

Z

R

ˇ̌
ˇQ.t; t�1=˛

y/

ˇ̌
ˇ dy

 .2⇡/

�1

 
� �

mX

kD1

�

k

!�1 Z

R

exp f�jyj˛g dy D c

0

for t > 0 and z 2 R: By using this result and (13), we conclude that, for t � 1 and z 2 R;

jG
0

.t; z/j  c

1

.1C jzj/�.1CŒ˛ç/

; z D t

�1=˛

x; x 2 R:

Indeed, if jzj  1 and jxj  t

1=˛

; then

.1C jzj/1CŒ˛çjG
0

.t; z/j  2

1CŒ˛ç

c

0

⌘ c

1

:

At the same time, if jzj > 1 (jxj > t1=˛), then, in view of estimate (13), we get

.1C jzj/1CŒ˛çjG
0

.t; z/j D
1CŒ˛çX

lD0

C

l

1CŒ˛ç

jzjl jG
0

.t; z/j


1CŒ˛çX

lD0

C

l

1CŒ˛ç

jzjl c

jzj1CŒ˛ç

 2

1CŒ˛ç

c ⌘ c

2

:
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Thus,

jG
0

.t; z/j  Qc.1C jzj/�.1CŒ˛ç/ D Qc.1C t

�1=˛jxj/�.1CŒ˛ç/

D Qct .1CŒ˛ç/=˛

⇣
t

1=˛ C jxj
⌘�.1CŒ˛ç/

; t > 1; x 2 R:

This yields

jG.t; x/j D t

�1=˛jG
0

.t; z/j  Qct Œ˛ç=˛
⇣
t

1=˛ C jxj
⌘�.1CŒ˛ç/

; t > 1; x 2 R:

Let k 2 N and t > 1:We have

D

k

x

G.t; x/ D .2⇡/

�1

t

�.1Ck/=˛

Z

R

Q

⇣
t; t

�1=˛

y

⌘
y

k expf�izyg dy; z D t

�1=˛

x:

Reasoning as in the case k D 0 and integrating by parts s D 1C Œ˛çC k times, we find

D

k

x

G.t; x/ D c

s

z

s

t

�.1Ck/=˛

Z

R

D

s

y

⇣
Q.t; t

�1=˛

y/y

k

⌘
e

�izy

dy; z ¤ 0:

By using the formula of differentiation of the product of two functions, we conclude that the evaluation of deriva-
tives of the function G is reduced to the evaluation of the sum of integrals of the form

j Qc
s

j
jzjs

2

4
1Z

0

y

k

ˇ̌
ˇDs

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ dy C ks

1Z

0

y

k�1

ˇ̌
ˇDs�1

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ dy

Ck.k � 1/ s.s � 1/
2ä

1Z

0

y

k�2

ˇ̌
ˇDs�2

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ dy C : : :

3

5
: (14)

Each integral in (14) has an integrable singularity at the point y D 0: Indeed, consider one of the integrals of
the form

1Z

0

y

k�p

ˇ̌
ˇDs�p

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ dy; 0  p  k; s D 1C Œ˛çC k; t > 1:

In view of estimates (10), the integrand admits the following estimate in a neighborhood of the point y D 0:

y

k�p

ˇ̌
ˇDs�p

y

Q

⇣
t; t

�1=˛

y

⌘ˇ̌
ˇ  L

s�p

y

k�p

y

˛�.s�p/

D L

s

y

k�pC˛�.1CŒ˛çCk�p/ D L

s

y

˛�Œ˛ç�1 D L

s

y

f˛g�1

:

This yields the convergence of the corresponding integral.
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As in the previous case (k D 0), we estimate each integral in sum (14) and arrive at the following estimate:

ˇ̌
ˇDk

x

G.t; x/

ˇ̌
ˇ  c

k

t

.Œ˛çCk/=˛

⇣
t

1=˛ C jxj
⌘�.1CŒ˛çCk/

; t > 1; x 2 R:

Similarly, we consider the case 0 < t  1 with regard for relations (11). As a result, we obtain estimates (12).
Lemma 3 is proved.

Remark 4. It follows from the properties of the function Q.t; �/ that the function G.t; x/ is continuously
differentiable as a function of the argument t 2 .0;C1/:Moreover, since

Q.t; �/ D F ŒG.t; x/ç D
Z

R

G.t; x/e

ix�

dx;
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Remark 5. Since � >
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By using the polynomial formula, we get
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where � WD t
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: This yields the following representation for the function
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1

ä : : : r

m

ä

Q
G.t

1

r

1

C : : :C t

m

r

m

C t; x/;

where

Q
G.�C t; x/ D .2⇡/

�1

Z

R

e

�.�Ct/j� j˛
e

�ix� D F

�1

ŒQ

1

.�C t; �/ç:

Lemma 4. The function G.t; �/; t 2 .0;C1/; as an abstract function of the parameter t with values in the
space ˆ

˛

; is differentiable with respect to t:

Proof. Since the Fourier transform is continuous, in order to prove the lemma, it suffices to show that the
function F ŒG.t; �/ç D Q.t; �/; regarded as an abstract function of the parameter t with values in the space ‰

˛

; is
differentiable with respect to t: In other words, it is necessary to prove that the limit relation

Ä

Åt

.�/ WD 1

Åt

ŒQ.t CÅt; �/ �Q.t; �/ç ! @

@t

Q.t; �/; Åt ! 0;

is true in a sense of convergence in the topology of the space ‰
˛

: Note that

Ä

Åt

.�/ D �j� j˛Q.t C ✓Åt; �/; 0 < ✓ < 1;

Ä

Åt

.�/ � @

@t

Q.t; �/ D j� j2˛Q.t C ✓

1

Åt /✓Åt; 0 < ✓

1

< 1:

In view of the properties of the functionQ.t; �/; we can show that

����ÄÅt

� @

@t

Q

����
p

! 0; Åt ! 0 8p 2 ZC:

Corollary 1. The equality

@

@t

.f ⇤G.t; �// D f ⇤ @G.t; �/
@t

8f 2 ˆ0
˛

; t > 0;

is true.

Proof. By the definition of convolution of a generalized function with a test function, we find

f ⇤G.t; x/ D
D
f

⇠

;

L
G.t; ⇠/

E
;

L
G.t; ⇠/ D G.t;�⇠/:

Then

@

@t

.f ⇤G.t; �// D lim
Åt!0

1

Åt

Œ.f ⇤G.t CÅt; �// � .f ⇤G.t; �//ç

D lim
Åt!0

⌧
f

⇠

;

1

Åt

h
T�x

L
G.t CÅt; ⇠/ � T�x

L
G.t; ⇠/

i�
:
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By Lemma 4, the limit relation

1

Åt

h
T�x

L
G.t CÅt; �/ � T�x

L
G.t; �/

i
�! @

@t

T�x

L
G.t; �/; Åt ! 0;

is true in a sense of convergence in the topology of the spaceˆ
˛

: Hence, in view of the continuity of the functional
f; we get

@

@t

.f ⇤G.t; x// D
⌧
f

⇠

; lim
Åt!0

1

Åt

h
T�x

L
G.t CÅt; �/ � T�x

L
G.t; �/

i�

D
⌧
f

⇠

;

@

@t

T�x

L
G.t; ⇠/

�
D

⌧
f

⇠

; T�x

@

@t

L
G.t; ⇠/

�
D f ⇤ @G.t; x/

@t

;

Q.E.D.

Lemma 5. In the space ˆ0
˛

; the following relations are true:

(i) G.t; �/! F

�1

ŒQ

2

ç; t ! C0I

(ii)

�G.t; �/ �
mX

kD1

�

k

G.t

k

; �/! ı; t ! C0 (15)

(ı is the Dirac delta function).

Proof. (i). Since the Fourier operator F Wˆ0
˛

! ‰

0
˛

is continuous, to prove the required assertion, it suffices
to show that

F ŒG.t; �/ç D Q

1

.t; �/Q
2

.�/! Q

2

.�/; t ! C0;

in the space ‰0
˛

: To this end, we take an arbitrary function  2 ‰
˛

and use the fact that Q
2

is a multiplicator in
the space ‰

˛

. Thus, by virtue of the Lebesgue theorem on limit transition under the sign of Lebesgue integral, we
obtain

hQ
1

.t; �/Q
2

.�/;  i D hQ
1

.t; �/;Q
2

.�/ .�/i

D
Z

R

Q

1

.t; �/Q

2

.�/ .�/ d� �!
t!C0

Z

R

Q

2

.�/ .�/ d�

D h1;Q
2

.�/ .�/i D hQ
2

;  i:

This yields assertion (i) of Lemma 5.
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(ii). By using assertion (ii) of Lemma 5, we get

�G.t; �/ �
mX

kD1

�

k

G.t

k

; �/ �!
t!C0

�F

�1

ŒQ

2

ç �
mX

kD1

�

k

F

�1

ŒQ

1

.t; �/Q
2

.�/ç

D F

�1

"
�Q

2

�
mX

kD1

�

k

Q

1

.t

k

; �/Q
2

.�/
#

D F

�1

" 
� �

mX

kD1

�

k

Q

1

.t

k

; �/
!
Q

2

.�/
#

D F

�1

2

4
 
� �

mX

kD1

�

k

Q

1

.t

k

; �/
! 

� �
mX

kD1

�

k

Q

1

.t

k

; �/
!�1

3

5 D F

�1

Œ1ç D ı:

Thus, relation (15) is true in the space ˆ0
˛

:

Lemma 5 is proved.

Remark 6. If � D 1 and �

1

D : : : D �

m

D 0; then problem (2), (3) turns into the Cauchy problem for
Eq. (2). In this case,Q

2

.�/ D 1 8� 2 R;

G.t; x/ D F

�1

Œe

�t j� j˛
ç;

and G.t; �/! F

�1

Œ1ç D ı as t ! C0 in the space ˆ0
˛

:

Corollary 2. Let

!.t; x/ D f ⇤G.t; x/; f 2 ˆ0
˛;⇤; .t; x/ 2 �

(here, ˆ0
˛;⇤ is a class of convolvers in the space ˆ

˛

/: Then the following limit relation is true in the space ˆ0
˛

W

�!.t; �/ �
mX

kD1

�

k

!.t

k

; �/! f; t ! C0: (16)

Proof. We now prove that the limit relation

F

"
�!.t; �/ �

mX

kD1

�

k

!.t

k

; �/
#
! F Œf ç; t ! C0; (17)

is true in the space ‰0
˛

: Since f 2 ˆ0
˛;⇤ and G.t; �/ 2 ˆ

˛

for any t > 0; we obtain

F Œ!.t; �/ç D F Œf ⇤G.t; �/ç D F Œf ç � F ŒG.t; �/ç D F Œf ç �Q.t; �/:
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Hence, it is necessary to show that

F Œf ç

 
�Q.t; �/ �

mX

kD1

�

k

Q.t

k

; �/
!
! F Œf ç

as t ! C0 in the space ‰0
˛

: Since

Q.t; �/ D Q

1

.t; �/Q
2

.�/! Q

2

.�/ as t ! C0

in the space ‰0
˛

(see the proof of assertion (i) in Lemma 5), we conclude that

�Q.t; �/ �
mX

kD1

�

k

Q.t

k

; �/ �!
t!C0

�Q

2

.�/ �
mX

kD1

�

k

Q

1

.t

k

; �/Q
2

.�/

D
 
� �

mX

kD1

�

k

Q

1

.t

k

; �/
!
Q

2

.�/ D 1

in the space ‰0
˛

:

Thus, relation (17) and, hence, also (16) are true in the corresponding spaces.
Corollary 2 is proved.

Remark 7. The function G.t; x/; .t; x/ 2 �; is a solution of Eq. (2). Indeed,

@

@t

G.t; x/ D �F�1

⇥j� j˛Q.t; �/⇤;

O
AG.t; x/ D F

�1

⇥j� j˛F ŒF�1

Q.t; �/ç⇤ D F

�1

⇥j� j˛Q.t; �/⇤:

This yields

@

@t

G.t; x/C O
AG.t; x/ D 0; .t; x/ 2 �;

Q.E.D.

In what follows, we say that the function G.t; x/; .t; x/ 2 �; is a fundamental solution of the multipoint (in
time) problem for Eq. (2).

By Corollary 2, the nonlocal multipoint (in time) problem for Eq. (2) can be formulated as follows: To find a
function u.t; x/; .t; x/ 2 �; satisfying Eq. (2) and the condition

� lim
t!C0

u.t; �/ �
mX

kD1

�

k

u.t

k

; �/ D f; f 2 ˆ0
˛;⇤ (18)

[the limit relation (18) is considered in the spaceˆ0
˛

and the restrictions imposed on the parameters �;�
1

; : : : ;�

m

;

t

1

; : : : ; t

m

are the same as in problem (2), (3)].
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Theorem 1. The nonlocal multipoint (in time) problem (2), (18) is correctly solvable, its solution is given by
the formula

u.t; x/ D f ⇤G.t; x/; .t; x/ 2 �;

and u.t; �/ 2 ˆ
˛

for any t > 0:

Proof. We now show that the function u.t; x/; .t; x/ 2 �; satisfies Eq. (2). Indeed (see, Corollary 1),

@u.t; x/

@t

D @

@t

.f ⇤G.t; x// D f ⇤ @G.t; x/
@t

and

O
Au.t; x/ D F

�1

⇥j� j˛F Œf ⇤G.t; �/ç⇤:

Since f is a convolver in the space ˆ
˛

; we get

F Œf ⇤G.t; �/ç D F Œf çF ŒG.t; �/ç D F Œf çQ.t; �/:

Hence,

O
Au.t; x/ D F

�1

⇥j� j˛Q.t; �/F Œf ç⇤ D �F�1


@

@t

Q.t; �/F Œf ç
�

D �F�1


F


@

@t

G.t; �/
�
F Œf ç

�
D �F�1


F


f ⇤ @G.t; �/

@t

��
D �f ⇤ @G.t; �/

@t

:

This implies that the function u.t; x/; .t; x/ 2 �; satisfies Eq. (2).
It follows from Corollary 2 that u satisfies condition (18) in the indicated sense. We also note that u continu-

ously depends on the function f 2 ˆ0
˛;⇤ because the operation of convolution has the property of continuity.

It remains to show that problem (2), (18) possesses a unique solution. To this end, we consider the Cauchy
problem

@v.t; x/

@t

D O
A

⇤
v.t; x/; .t; x/ 2 Œ0; t

0

/ ⇥R ⌘ �

0
; 0  t < t

0

< C1; (19)

v.t; �/
ˇ̌
ˇ̌
tDt0

D  ;  2 ˆ0
˛;⇤; (20)

where O
A

⇤ is the restriction of the adjoint operator O
A to the spaceˆ

˛

: Condition (20) is understood in a weak sense.
The Cauchy problem (19), (20) is correctly solvable. Its solution is given by the formula

v.t; x/ D  ⇤G⇤
.t; x/; G

⇤
.t; x/ D F

�1

Œexpf.t � t
0

/j� j˛gç; v.t; �/ 2 ˆ
˛

for every t 2 Œ0; t
0

/:
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Let Qt

t0
Wˆ0

˛;⇤ ! ˆ

˛

be an operator that associates the functional  2 ˆ

0
˛;⇤ with the solution of problem

(19), (20). The operator Qt

t0
is linear and continuous. It is defined for any t and t

0

such that 0  t < t

0

< C1;

and has the following properties:

8 2 ˆ0
˛;⇤W

dQ

t

t0
 

dt

D O
A

⇤
Q

t

t0
 ; lim

t!t0

Q

t

t0
 D  ;

(the limit is considered in the space ˆ0
˛

).
Consider a solution u.t; x/; .t; x/ 2 �; of problem (2), (18), which is understood as a regular functional from

the space ˆ0
˛;⇤ � ˆ

˛

:We now prove that problem (2), (18) may have only a unique solution in the space ˆ0
˛;⇤: To

this end, it suffices to show that the role of unique solution of Eq. (2) with the trivial initial condition can be played
solely by the functional u.t; x/ D 0 (for every t 2 .0;1/). We apply the functional u to a function Qt

t0
 2 ˆ

˛

;

where  is an arbitrary fixed element from the space ˆ
˛

⇢ ˆ

0
˛;⇤: Differentiating with respect to t , in view of

Eqs. (2) and (19), we get

@

@t

˝
u.t; �/;Qt

t0
 

˛ D
⌧
@u

@t

;Q

t

t0
 

�
C
*
u;

@Q

t

t0
 

@t

+

D
D
� O
Au; Q

t

t0
 

E
C
D
u;

O
A

⇤
Q

t

t0
 

E

D �
D O
Au; Q

t

t0
 

E
C ˝
Au; Q

t

t0
 

˛ D 0; t 2 Œ0; t
0

/:

Thus, hu.t; �/;Qt

t0
 i is a constant. By using the properties of abstract functions, we obtain the relation

lim
t!t0

hu.t; �/;Qt

t0
 i D hu.t

0

; �/;  i D const ⌘ c; c D c.t

0

/;

at any point t
0

2 .0;C1/: Hence, if f D 0 in (18), then

� lim
t!C0

hu.t; �/;  i �
mX

kD1

�

k

hu.t
k

; �/;  i D �c

0

�
mX

kD1

�

k

c

k

D 0:

This implies that c
0

D c

1

D : : : D c

m

D 0: Indeed, assume that this is not true. Thus, let c
0

¤ 0: This yields the
relation � �

X
m

kD1

�

k

˛

k

D 0; where ˛
k

D c

k

=c

0

; i.e.,

� D
mX

kD1

�

k

˛

k

:

Since ˛
k

are arbitrary constants and, by the condition, �;�
1

; : : : ;�

m

are fixed parameters such that

� >

mX

kD1

�

k

;

the obtained contradiction proves that c
0

D 0: Similarly, we can show that c
1

D : : : D c

m

D 0:
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Thus, hu.t
0

; �/;  i D 0 for any  2 ˆ

˛

; i.e., u.t
0

; x/ is a null functional from the space ˆ0
˛;⇤: Since t0 2

.0;C1/ and t
0

is chosen arbitrarily, we conclude that u.t; x/ D 0 for all t 2 .0;C1/:

Theorem 1 is proved.

Theorem 2. Suppose that u.t; x/; .t; x/ 2 �; is a solution of problem (2), (18) with an initial function
f 2 ˆ0

˛;⇤ with bounded support (i.e., supp f is a bounded set in R/: Then u.t; x/ ! 0 as t ! C1 uniformly in
R:

Proof. Let suppf ⇢ Œa

1

; b

1

ç ⇢ Œa

2

; b

2

ç ⇢ R: Consider a function ' 2 ˆ
˛

such that '.x/ D 1; x 2 Œa
1

; b

1

ç;

and supp' ⇢ Œa

2

; b

2

ç: This function exists because the space ˆ
˛

contains finite functions. We represent the
function u.t; x/ in the form

u.t; x/ D ˝
f

⇠

; '.⇠/G.t; x � ⇠/

˛C ˝
f

⇠

; �.⇠/G.t; x � ⇠/

˛
;

where � D 1 � ': Since supp .�.⇠/G.t; x � ⇠// \ supp f D ¿; we have

u.t; x/ D t

�1=˛

D
f

⇠

; t

1=˛

'.⇠/G.t; x � ⇠/

E
:

The generalized function

f 2 ˆ0
˛;⇤ ⇢ ˆ

0
˛

D
1[

pD0

ˆ

0
p;˛

has a finite order. Hence,

ju.t; x/j  t

�1=˛kf k
p

kÄ
t;x

k
p

;

where

Ä

t;x

.⇠/ D t

1=˛

'.⇠/G.t; x � ⇠/:

Note that Ä
t;x

.⇠/ D 0 for ⇠ 2 R n Œa
2

; b

2

ç: Therefore, in order to prove the formulated assertion, it suffices to
show that Ä

t;x

.⇠/ is bounded in the norm of the space ˆ
p;˛

; i.e., kÄ
t;x

k
p

 c

p

; where the constant c
p

> 0 is
independent of t and x (t > 1 and x 2 R). To this end, we use the estimate

ˇ̌
ˇDl

⇠

G.t; x � ⇠/

ˇ̌
ˇ  c

l

t

Œ˛ç=˛

⇣
t

1=˛ C jx � ⇠j
⌘�.1CŒ˛çCl/

 c

l

t

Œ˛ç=˛

t

�.1CŒ˛çCl/=˛  c

l

t

�1=˛

; l 2 ZC; (21)

which is true for t > 1; x 2 R; and ⇠ 2 Œa
2

; b

2

ç and follows from (12). Since Ä
t;x

.⇠/ D 0 for ⇠ 2 R n Œa
2

; b

2

ç; by
virtue of (21), we get

kÄ
t;x

k
p

D t

1=˛ sup
⇠2Œa2;b2ç

º
pX

kD0

.1C j⇠j/1CŒ˛çCk

ˇ̌
ˇ.'.⇠/G.t; x � ⇠//

.k/

ˇ̌
ˇ

Ω
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 t

1=˛ sup
⇠2Œa2;b2ç

8
<

:

pX

kD0

.1C c/

1CŒ˛çCk

kX

lD0

C

l

k

ˇ̌
ˇDl

⇠

'.⇠/

ˇ̌
ˇ
ˇ̌
ˇDl

⇠

G.t; x � ⇠/

ˇ̌
ˇ

9
=

;  c

p

;

where c D maxfja
2

j; jb
2

jg (here, we have used the fact that j'.l/.⇠/j  c

0
l

; l 2 f0; 1; : : : ; kg; ⇠ 2 Œa
2

; b

2

ç). Thus,

ju.t; x/j  Qc
p

t

�1=˛

; t > 1; x 2 R;

where Qc
p

D c

p

kf k
p

; which implies that u.t; x/! 0 as t ! C1 uniformly on R:
Theorem 2 is proved.

In particular, if f D ı 2 ˆ0
˛;⇤ and supp ı D f0g in condition (18), then

u.t; x/ D ı ⇤G.t; x/ D G.t; x/! 0

as t ! C1 uniformly on R: In this case, the same result directly follows either from estimate (12) (for c D 0) or
from the estimate

jG.t; x/j D .2⇡/

�1

ˇ̌
ˇ̌
ˇ̌
Z

R

Q.t; �/e

�i�x

d�

ˇ̌
ˇ̌
ˇ̌  .2⇡/

�1

Z

R

jQ.t; �/jd�

 .2⇡/

�1

Z

R

e

�t j� j˛ jQ
2

.�/j d�

 .2⇡/

�1

 
� �

mX

kD1

�

k

!�1 Z

R

e

�t j� j˛
d�

D c

0

t

�1=˛

Z

R

e

�jyj˛
dy D c

0
0

t

�1=˛ 8x 2 R:

4. Conclusions

It is shown that the restriction of the operator A D jD
x

j˛; ˛ 2 .1;C1/ n f2; 3; : : :g to the space ˆ
˛

coincides
with the pseudodifferential operator constructed according to the function symbol �.�/ D j� j˛; � 2 R; which
is not differentiable at the point � D 0: This enables us to apply the method of Fourier transformation to the
investigation of the nonlocal multipoint problem for the evolutionary equation with this operator. We prove the
correct solvability of the indicated problem with initial function, which is an element of the space of generalized
functions of the distribution type. The proposed statement of the problem enables one to extend the class of initial
functions because each function with power singularity at the point 0 can be regularized in the space of Schwarz-
type distributions (i.e., it can be regarded as a regular functional). We also obtain the representation of the solution
in the form of the convolution of the fundamental solution with the initial function, investigate the properties of
this fundamental solution, and establish the fact that, under certain restrictions imposed on the initial function, the
solution of the problem uniformly converges to zero as t ! C1 on R:
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