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Let X and Y be a topological space and Z be a metric space. The space S(X x
Y, Z) of separately continuous function f : X XY — Z we always endows by the
cross-uniform topology. This topology is generated by the base which consists of the
sets

We(fo) = {1 € S(X x¥,2) :1f(p) = fo(p)|z < & for any p € xE},
where F is a finite subset of X XY,
et = (X x pry (E)) U (pry (E) x Y)

is the cross of the set F, € > 0 and fo € S(X xY). This topology was introduced in
[1] for the space S = S([0;1]?,R) and called there by the topology of the sectionally
uniform convergence. In [1] it was proved only that S is a separable non-metrizable
complete topological vector space, and the authors asked about the other properties
of S.In [2, 3, 4] the authors proved that S(X xY) is a meager, compleat, barreled and
bornological topological vector space for any compacta X and Y without isolated
points.

Let w(X) denote the weight of a topological space X and let ¢(X) denote the
cellularity of X. The sharp cellularity is

cﬁ(X) = sup {\Z/I|+ : U is a disjoint family of open sets in X},

where |A| means the cardinality of a set A and m™ means the least cardinal number
which is grater then the cardinal number m. In [5] was announced the following
result.

Theorem 1. Let X,Y be infinity compacta and K be a compact. Then K embeds
into S(X x Y) if and only if w(K) < min{c*(X),c*(Y)}.

Now we pass to the generalization of this result to the space S(X XY, Z). Recall
that a compact space K calls an Eberlein compact if it is homeomorphic to some
subspace of C}, (X)) for some compact space X. We start from the following observati-
on.

Theorem 2. Let X be a compact space, Y be a separable metrizable space and K
be a compact subspace of Cp(X,Y). Then K is an Eberlein compact.

This result allows to modify the proof of Theorem 1 and obtain the following.

Theorem 3. Let X,Y be compacta, Z be a separable metric space and K be a
compact space which embeds into S(X x Y,Z) Therefore, the following inequality
holds: w(K) < min{c*(X),c*(Y)}.
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And now we obtain the following generalization of Theorem 1.

Theorem 4. Let X,Y be infinity compacta, Z be a separable metric space which
contains a homeomorphic copy of R and K be a compact. Then K embeds into
S(X xY,Z) if and only if w(K) < min{c*(X),c*(Y)}.
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