Показати скорочений опис матеріалу

dc.contributor.authorPukalsky, Ivan
dc.contributor.authorLuste, Iryna
dc.date.accessioned2024-11-19T08:09:46Z
dc.date.available2024-11-19T08:09:46Z
dc.date.issued2024
dc.identifier.citationLuste, I.P., Pukal’s’kyi, I.D. (2024) General Boundary-Value Problem for Nonuniformly Parabolic Equations with Power Singularities. J Math Sci 282, 735–750. https://doi.org/10.1007/s10958-024-07212-yuk_UA
dc.identifier.issn1573-8795
dc.identifier.issn1072-3374
dc.identifier.urihttps://archer.chnu.edu.ua/xmlui/handle/123456789/10847
dc.description.abstractWe investigate a general boundary-value problem for nonuniformly 2b -parabolic equations with degeneration. The coefficients of parabolic equations and boundary conditions admit power singularities of any order in any variables on a certain set of points. By using a priori estimates and the Arzelà and Riesz theorems, we establish the existence and integral representation for the unique solution of the formulated boundary-value problems. The estimates of the solution of the general parabolic boundary- value problem and its derivatives in Hölder spaces with power weight are obtained. The order of the power weight is determined via the values of the orders of power singularities and degenerations of the coefficients of 2b -parabolic equations and boundary conditions.uk_UA
dc.language.isoenuk_UA
dc.publisherJournal of Mathematical Sciencesuk_UA
dc.subject2b-parabolic equationsuk_UA
dc.subjectpower singularitiesuk_UA
dc.subjectinterpolation inequalitiesuk_UA
dc.subjecta priori estimatesuk_UA
dc.subjectHölder spacesuk_UA
dc.subjectStieltjes integraluk_UA
dc.titleGeneral Boundary-Value Problem for Nonuniformly Parabolic Equations with Power Singularitiesuk_UA
dc.typeArticleuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу