Show simple item record

dc.contributor.authorMytskan, Mykhaylo
dc.date.accessioned2021-11-30T21:59:54Z
dc.date.available2021-11-30T21:59:54Z
dc.date.issued2021
dc.identifier.citationZvozdetskyi T. I., Mytskan M. M. On the equivalence of some convolutional equalities in spaces of sequences, Bukovinian Math. Journal. 9, 1 (2021), 180 188.uk_UA
dc.identifier.urihttps://archer.chnu.edu.ua/xmlui/handle/123456789/2912
dc.description.abstractThe problem of the equivalence of two systems with $n$ convolutional equalities arose in investigation of the conditions of similarity in spaces of sequences of operators which are left inverse to the $n$-th degree of the generalized integration operator. In this paper we solve this problem. Note that we first prove the equivalence of two corresponding systems with $n$ equalities in the spaces of analytic functions, and then, using this statement, the main result of paper is received. Let $X$ be a vector space of sequences of complex numbers with K$\ddot{\rm o}$the normal topology from a wide class of spaces, ${\mathcal I}_{\alpha}$ be a generalized integration operator in $X$, $\ast$ be a nontrivial convolution for ${\mathcal I}_{\alpha}$ in $X$, and $(P_q)_{q=0}^{n-1}$ be a system of natural projectors with $\displaystyle x = \sum\limits_{q=0}^{n-1} P_q x$ for all $x\in X$. We established that a set $(a^{(j)})_{j=0}^{n-1}$ with $$ \max\limits_{0\le j \le n-1}\left\{\mathop{\overline{\lim}}\limits_{m\to\infty} \sqrt[m]{\left|\frac{a_{m}^{(j)}}{\alpha_m}\right|}\right\}<\infty $$ and a set $(b^{(j)})_{j=0}^{n-1}$ of elements of the space $X$ satisfy the system of equalities $$ b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} a^{(k)}) \ast {(P_{k}b^{(j)})}, \quad j = 0, 1, ... \, , \, n-1, $$ if and only if they satisfy the system of equalities $$ b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} b^{(k)}) \ast {(P_{k}a^{(j)})}, \quad j = 0, 1, ... \, , \, n-1. $$ Note that the condition on the elements $(a^{(j)})_{j=0}^{n-1}$ of the space $X$ allows us to reduce the solution of this problem to the solution of an analogous problem in a space of functions analytic in a disc.uk_UA
dc.description.sponsorshipМатематичного аналізуuk_UA
dc.language.isootheruk_UA
dc.subjectзгорткаuk_UA
dc.subjectпростір послідовностейuk_UA
dc.subjectпростір аналітичних функційuk_UA
dc.subjectоператор узагальненого інтегруванняuk_UA
dc.subjectconvolutionuk_UA
dc.subjectspace of sequencesuk_UA
dc.subjectspace of analytic functionsuk_UA
dc.subjectgeneralized integration operatoruk_UA
dc.titleПро рівносильність деяких згорткових співвідношень у просторах послідовностейuk_UA
dc.title.alternativeOn the equivalence of some convolutional equalities in spaces of sequencesuk_UA
dc.typeArticleuk_UA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record