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INTRODUCTION 

 

Probability theory is a science whose subject is the establishment of 

regularities in mass random phenomena (events). 

The history of the development of probability theory is ancient. It began 

with research in gambling. They began to deal with it more seriously in the 

16th and 17th centuries. Famous names include Jakob Bernoulli, Pierre-

Simon Laplace, Carl Friedrich Gauss among the scientists who obtained 

important results in the theory of probabilities. Naturalists who achieved 

great success in the study of physical phenomena, in particular Augustin 

Louis Cauchy, were seriously engaged in the theory of probabilities. 

Among Ukrainian mathematicians, Borys Hnedenko, Iosif Hykhman, 

Anatoliy Skorokhod, Mykhailo Yadrenko, Volodymyr Korolyuk made a 

significant contribution to the development of probability theory. 

 

  



4 

 

CHAPTER 1 

RANDOM EVENTS 

 

§1. A stochastic experiment. Random event. 

Frequency of random event 

 

Let's imagine such an experiment: let the dice be rolled many times 

under the same conditions. In each toss, the number of points that will fall on 

the upper face of the cube is the result of the experiment. This result can be 

numbers 1, 2, 3, 4, 5, 6. 

If such an experiment is carried out many times under the same 

conditions, then such an experiment is called stochastic. Sometimes they say 

probabilistic. The outcome of each individual toss is impossible to predict, 

but many outcomes can be described. We will describe the elementary results 

of the experiment, which are no longer broken down (interpreted) into 

smaller (more elementary) ones. With each elementary result, we will 

associate the events – "a one was rolled", "a two was rolled",..., "a six was 

rolled". 

The set of these elementary events is called the space of elementary 

events and is denoted by  . 

A condition is imposed on the space of elementary events – only one 

element of the space can appear as a result of the experiment. More complex 

events are formed from elementary events. For example, "an even number is 

on the upper face", "a number is greater than 3 on the upper face", etc. Each 

of the elementary events may happen or may not happen, but one of them 

will definitely take place (happen). We will call such events random events. 

When tossing a coin, for example, elementary events "a coat of arms 

fell out" and "a figure fell out". We denote them, respectively, by C={"a coat 

of arms fell out"} and F={"a figure fell out"}, then the space ={C, F}. 

One should not think that the space of elementary events is necessarily 

finite. Consider the following experiment: a coin is tossed until a coat of arms 
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falls on the upper face. The space of elementary events in this experiment  

= {C, FC, FFC, FFFC, FFFFC,...}. The number of elementary events is 

counted here. 

And when measuring length, the space of elementary events is a 

segment, assuming that any real number can be the result of the measure-

ment. There is a continuous number of elementary events. 

If the experiment is carried out en masse, say n several times, and the 

number of experiments in which some recorded event occurs is noted m, then 

the ratio m

n
 is called the frequency of the event. If this event is denoted by A, 

and ( )m A  is the number of experiments in which it occurred, then the 

frequency of the event in the stochastic experiment is calculated by the 

formula 
( )

( )
n

m A
A

n
  . It turns out that the frequency of the event has the 

property of stability, which consists in the fact that there exists lim ( )
n

n
A


, 

denote it by ( )p A . This means, for example, when tossing a coin, that the 

frequency of occurrence of F at very large ones differs little from 1
2
. Due to 

the stability of the frequency of the event, the idea arose whether the 

frequency could not be used as a characteristic of the event. You can, but for 

this you need to carry out a lot of complex and sometimes very expensive, 

destructive, etc. experiments. Therefore, it is necessary to look for other 

approaches to characterize random events. 

 

Let the space of elementary events   be given. 

Definition. A random event in a stochastic experiment is any subset of 

the space of elementary events. 

Elementary events that are elements of this subset are called elementary 

events that cause a random event. 

In the future, random events are denoted by A, B, C, etc. – these are 

subsets of the set  . 

The event itself   (it is a subset of  ) is a reliable (probable) event. It 

is called so because it always happens in every experiment. 
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A subset is also the empty set . We will call such an event an 

impossible event, it is not caused by any of the elementary events. 

 

Example. Let us consider a stochastic experiment with the tossing of a 

die. Here ={1, 2, 3, 4, 5, 6}. Let's consider the event A – a number that is 

divisible by 3 without a remainder has fallen on the upper face of the cube. 

Then A ={3, 6}. The elementary events {3}, {6} cause the event A. Consider 

the event B – an even number is drawn. B ={2, 4, 6} is a subset of  . 

Events A and B have common elements (element 6). This means that 

they can happen simultaneously. 

Definition. Events that can occur simultaneously are called joint 

events. 

Let's describe another event C – a number of no more than two points 

fell on the upper edge: {1,2}C  . Events A and C cannot occur 

simultaneously (they do not have the same elementary events). 

Definition. Events that cannot occur simultaneously are called 

incompatible events. 

In the experiment with tossing a coin before the first appearance of the 

coat of arms, the space of elementary events  

= {C, FC, FFC, FFFC, FFFFC,...}. 

Let's consider the event A – the coat of arms appeared after an even number 

of tosses. Then  

A= {FC, FFFC, FFFFFC,...}. 

 

Let the given event be A. 

Definition. The opposite of an event A is an event A  that occurs when 

and only when the event A does not occur. 
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It is easy to understand  that when an event A corresponds to some set, 

then A the addition of this set to the set corresponds to the event  . It is 

convenient to illustrate this with the help of Venn

 diagrams: 

Let events A and B. 

Definition. The sum of events A and B is an event C that occurs when 

and only when at least one of the events A or B occurs. 

An event A is caused by a set of events (a set), and another set 

corresponds to the event B. The event C corresponds to the union of the sets A 

and B. Therefore, it is natural to denote the sum of events (use to denote an 

event C) as follows: C A B . 

Definition. The product of events A and B is an event C that occurs 

when and only when both event A and event B occur. 

Elementary events must occur, which cause the appearance of both 

events A and B, that is, the intersection of events, so it is natural to record 

C A B . 

 

                                                             
 John Venn (1834-1923) is an English logician and philosopher. 

   

       

           A  
  

     A  

   

 

          A          B  
 

        

A B  

 

   

 

          A          B  
 

     A B  
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Definition. The difference between events A and B is called the event 

C, which consists in the fact that the event A occurs and the event B does not 

occur. It is accepted to record \C A B A B  . 

Now we can write the following obvious relations: 

= ,   = ,   A A A ,   A A A ,   A   ,   A  A , and 

others. 

Since A, B, C are sets of elementary events, all the laws of set algebra 

apply to events, in particular: 

( ) ( ) ( )A B C A B A C , 

( ) ( ) ( )A B C A B A C , 

A B A B , A B A B . 

Definition. An event A is said to cause an event B, if the execution of 

the event A leads to the execution of the event B. 

 

It is written like this: A B . If an event A causes an event B ( A B ) 

and an event B causes an event A ( B A ), then the events A and B are 

considered the same (equal), i.e. A B . 

Obviously, what A causes   ( A) as well as 

A A B , A B B , A B A . 

  

   

 

          A          B  
 

 \A B      
 

   
 

                 A    B  
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§2. Classical definition of probability 

 

Let the space of elementary events be given  . Suppose that it consists 

of no more than a counted number of elementary events (that is, these 

elementary events can be renumbered and there can be a finite number of 

them):  1 2
, ,..., ,...

n
    . For some reasons, let each 

i
  be matched with 

a real number 
i

p  in such a way that 

1)  0
i

p  , 

2)  
1

1
i

i

p




 . 

 

Definition. Let A some event, i.e. А , then the probability of the 

event A is called the number ( )P А , which by definition is equal to 

:

( )
i

i

i А

P А p


  . 

This definition can be called the classical definition of probability. 

Here they do not talk about how 
i

  the number 
i

p  is matched. If you choose 

these numbers differently, you can get different results. 

 

Example 1. We will consider tossing a fair coin. With such a one-time 

experiment, a number or coat of arms may fall out on the upper face of the 

coin. In this case ={C, F} (that is 
1

C  , 
2

F  ) is a finite set. For each 

of the elements 
1

  and 
2

 , it is necessary to match the numbers with 

properties 1) and 2). If the sides of the coin are equal, then it is natural to 

choose these numbers as 1

1

2
p  , 2

1

2
p  . 

The following events can be considered in this experiment:  , {C}, 

{F}, {C, F}= . It is obvious that ( ) 0P   , because 
1

C   and 
2

F  , 

are not included in   and, 
:

0
i

i

i

p


 .  1({ })
2

P C  ,  1({ })
2

P F  , ( ) 1P   . 
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Example 2. Let's consider an experiment that consists in throwing a 

correct dice. The space of elementary events consists of six elementary 

events: 1 – "the number 1 fell on the upper face of the cube", etc. Ago 

 1; 2; 3; 4; 5; 6  . Since all faces are equal, the cube is correct, we 

assign the same numbers with properties 1) and 2) to each elementary event. 

Ago 1 2 3 4 5 6

1

6
p p p p p p      . 

Different events can be considered in this experiment. There can be 62  

a total of events. Consider the following event: A – a number appeared on the 

upper edge, which when divided by 3 gives a remainder of 1. Then  

 1; 4A  , and the probability of this event according to the definition 

1 4

1 1 1( )
6 6 3

P А p p     . 

 

Example 3. Consider a "falsified" cube. In order for 6 to fall out more 

often, the center of gravity must be shifted down so that 1 is at the bottom 

and 6 is at the top. Let's assume that the center of gravity is shifted so that the 

numbers that are matched are: 6 6

7

36
p   , 1 1

5

36
p    and the 

following numbers are matched to other elementary events. In such an 

experiment for the event A, from example 2, 11( )
36

P А  . 

We will not consider how to choose these numbers 
i

p , you can conduct 

an experiment many times, analyze the frequencies and then choose the 

numbers 
i

p  in a certain way. 

 

Example 4. A coin is tossed until it lands with the coat of arms up. 

Here 

= {C, FC, FFC, FFFC, FFFFC,..., FFF…FC,…}. 

We are dealing with  , which contains a countable number of points 

(elementary consequences of 
i

 ). We match the numbers  



11 

1 1

1

2
p   , 

2

2 2
1

2
p     

 
, 

3

3 3
1

2
p     

 
, 

4

4 4
1

2
p     

 
,…, 

1

1 1
1

2

n

n n
p



 

    
 

,… 

to the elementary consequences. Let's check conditions 1) and 2). Condition 

1) is fulfilled, because all 0
i

p  . Condition 2) is also fulfilled: 

2 3
1

1 1 1 2... 1
12 2 2 1
2

i

i

p            
    

 . 

Consider the event A, which consists in the fact that the number of rolls 

is divided by three without a remainder. Then it looks like 

= {FFC, FFFFFC, FFFFFFFFC,...}. 

By definition, the probability of this event 

 
 

3

3 6 9

3

1
2 1 81 1 1 1( ) ...

2 2 2 8 7 711
2

P А                  
      



. 

In general, if the space of elementary events   is specified and the 

probability P (i.e., numbers 
1 2
, ,...p p ) is introduced in some way, then it is 

said that a probabilistic model  , P  is specified. 

A partial case of the above is the case of finite   (finite number of 

elements in this set) and equally possible elementary results of the 

experiment. In this case, all 
i

p  are the same, i.e. 
i

p p . Therefore, the 

probability of any event A is: 
: :

( )
i i

i

i А i А

P А p p p m
  

     , where m  is the 

number of elementary events that cause the event A (which cause the event 

A), or the number of favorable occurrences of elementary events. But the sum 

over all i is 
: :

1 1
i i

i

i i А

p p p n
  

     , where n is the number of all 
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elementary events. From here we have 1p
n

 . We substitute in P(A) and get 

( ) mP А p m
n

   , i.e 

( ) mP А
n

  

– the classical definition of probability: the probability of an event A is 

equal to the ratio of the number of favorable elementary events to the total 

number of elementary events. 

Example 5. From a carefully shuffled deck of cards (24 sheets), 3 cards 

are taken out at random. What is the probability that one queen and two aces 

are drawn? 

◄ Thoroughly shuffled – means an equal chance of drawing a random 

card. Random means an equal opportunity to draw an arbitrary three cards. In 

this example, the total number of possible cases is the number of ways you 

can choose 3 cards out of 24:  

3

24

24! 22 23 24 4 23 22
3! 21! 1 2 3

n C       
  

. 

The number of ways to choose one queen is 4, and the number of ways 

to choose two aces from four aces is 2

4
C . Therefore, the number of favorable 

cases for the occurrence of the event  

2

4

4! 3 44 4 4 24
2! 2! 2

m C       


. 

Then  

  3 324

4 22 23 11 23 253

mP A
n

   
  

. ► 
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§3.  Geometric probability 

 

If you shoot at a target, the question arises about the distance from the 

point of impact to the target. This distance can be an arbitrary number from 

some segment. Then the space of elementary events is continuous and it is 

impossible to find probabilities of events according to the classical definition. 

Often, the space of elementary events is some part of a plane, or a 

straight line, or 3-dimensional space, and the events under consideration have 

such a property that they can be assigned a certain "measure". 

 

Then the probability of event A is called measure A  ( А) divided 

by measure  , i.e. 
( )

( )
( )

mes A
P А

mes



. This is how geometric probability is 

determined. 

 

Example (meeting problem). 

The two agreed to meet at some fixed time. The arrangement is as 

follows: the meeting can take place during time T (for example, one hour). 

The first to arrive waits for the second during time T  . What is the 

probability that the meeting will take place if the arrival times of the meeting 

participants are equal (the arrival of the participants during time T is equally 

possible). 

Let us denote: x – the moment of arrival of the first participant of the 

meeting (from the beginning of the stipulated time), y – the moment of arrival 

of the second participant of the meeting. It is clear that 0 x T  ,  0 y T  . 

Then the elementary result of this experiment will be a pair of numbers  

( , )x y . What is the space of elementary events? The space of elementary 

events consists of pairs of numbers ( , )x y  such that 0 x T   and 0 y T  , 

i.e.  

{( , ) : 0 , 0 }x y x T y T     . 
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y  

T  

    A  
 

 

 

    

  

 0         T        x  
 

 

Geometrically (on the plane)   are the points of the corresponding 

square. Each point determines the moment of arrival of meeting participants. 

Let's describe event A – the meeting will take place: 

{( , ) :0 ,0 , | | }A x y x T y T x y         . 

 

Let's represent the set A, that is, the set of points of the square   that 

satisfy the inequality x y   , which is equivalent to the following 

inequalities  

x y           
,

,

x y

x y





 


  
       

,

.

x y

y x





 


 
 

We will use the area as a measure on the plane. Therefore  
2mes T  , 2 2( )mes A T T    . 

Then, by definition, the probability that the meeting will take place is 

equal to  
22 2

2

( )
( ) 1 1

T T
P A

T T

        
 

. 
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§4.  Axioms of probability theory 

 

At the end of the 19th century, scientists approached the need to formu-

late a system of axioms of probability theory. Academician A.M.Kolmogo-

rov

 formulated the axioms in 1933. 

Consider a stochastic experiment. We denote the corresponding space 

of elementary events by  . Let   be a class of events that satisfies the 

following conditions: 

 

1
 )   as the event belongs to the class , i.e  , 

2
 ) if A is an event from class , then A  is an event from class , 

3
 ) if 

i
A   1,2,...i   are events from the class , then 

1
i

i

A




 . 

 

Sets from the class    are called random events. 

 

Let such a function of events  P   (a mapping of the class  ) be given 

that satisfies the following conditions: 

 

1
 )    1P   , 

2
 )    0P A   for any event  A , 

3
 )  if 

i
A   1,2,...i   are elements of class , such that 

k l
A A   

( )k l , then    
1

1

i i
i

i

P A P A





 
 

 
 . 

 

If random event A , then  P A  is called the probability of 

random event A. 

                                                             
 Andrii Mykolayovych Kolmogorov (1903-1987) is a Soviet mathematician. 
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The first three axioms (
1

 –
3

 ) actually determine the class of observed 

events (events that are allowed to be considered), the last three axioms (
1

 –

3
 ) determine the probability of these events. 

Probability theory does not deal with how to construct a measure of 

events. It is assumed everywhere that  , , P  is given. Then the 

probability space is said to be given. 

This system of axioms is not contradictory, because there are objects, 

discussed above, on which they are fulfilled. 

 

 

§5.  Properties of probability 

 

1
0
. The probability of the opposite event is equal    1P A P A  . 

◄ If A belongs to ,  then according to axiom 2
  belongs to . But 

A A , A A  , therefore according to axiom 
3

  

        1P A A P A P A P     . 

From here we get the required equality. ►  

 

Example 1. A dice is thrown. What is the probability that a unit is not 

dropped? 

Let the event A be that a one was rolled when the dice was tossed. Then 

the event A  is opposite to it – when the dice were thrown, no one came out. 

Therefore, according to property 1
0
,     511 1

6 6
P A P A     . 

Example 2. Find the probability that among five randomly selected 

numbers there is at least one of the three given numbers? 

Let the event A be that there is at least one of the three given numbers 

among the five selected numbers. Let's find the probability of the opposite 

event A  – among the five selected numbers, there is none of the three given 
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numbers. Since five numbers can be chosen in different  510  ways, and five 

numbers that do not contain any of the three given numbers can be chosen in 

57  different ways, then  
5

7

10
P A

 
  
 

. Therefore, from property  1
0
,  

     
5

1 1 0,7P A P A    . 

 

2
0
. The probability of an impossible event is zero   0P   . 

◄  If A , then A  , and from property 1
0
, at A , we obtain 

  1 1 0P     .  ► 

 

3
0
. Let events A and B be from the class  ( A , B ), in 

addition, event A causes event B ( A B ), then the probability of the 

difference of events is equal to the difference of their probabilities: 

     \Ρ Β A Ρ Β Ρ Α  . 

 

◄  It is clear that  \Β Α Β Α , it is important here that ( \ )A B A  

is an impossible event, because ( \ ) ( )A B A A B A   . Then, 

according to the axiom 3
 , we have      \Ρ Β Ρ Α Ρ Β Α  . From here we 

get the required equality. ► 

 

4
0
. (consequence of 3

0
) If A , B , and event A causes event B  

( A B ), then the probability of event A does not exceed the probability of 

event B:    Ρ Α Ρ Β . 

◄  The proof follows from property 3
0
, because  \ 0Ρ Β A   and then 

    0Ρ Β Ρ Α  .  ► 
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5
0
. For any event A from the class ,  the probability  P A  does not 

exceed 1: ( ) 1P A  . 

◄  The proof follows from property 4
0
 for the event B .   ► 

If we also take into account axiom 
2

 , then we get  

0 ( ) 1P A  . 

 

6
0
. (Theorem of addition of probabilities).  Let A , B  – be 

random events. Then the probability of the sum of events A B  is equal  

( ) ( ) ( ) ( )P A B P A P B P A B   . 

◄  Let's write the sum of events A B as follows 

( \ ( )) ( \ ( )) ( )A B A A B B A B A B . 

In the right part, the terms are not compatible, that is, their sum is an 

impossible event (equal to  ). Therefore, the probability of the sum of 

events, according to axiom 3
 , is equal to t he sum of the probabilities of the 

terms. In addition, A B A  and A B B , so the probability of difference 

(in the first and second terms) is equal to the difference in probabilities. That 

is,  

( ) ( ) ( ) ( ) ( ) ( )P A B P A P A B P B P A B P A B     .   ► 

 

Example 3. A tetrahedron whose faces are painted is tossed up (one 

face is yellow, the second is blue, the third is red, and all three colors are 

applied to the fourth) and the event is tracked in which color the face of the 

tetrahedron is painted, with which it will fall on the table. What is the 

probability that this face is yellow or blue? 

◄  Consider the following events: 

Y - on the face that fell on the table there is a yellow color; 

B – the face that fell on the table is blue; 
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R – the face that fell on the table has a red color. 

It is necessary to find ( )P Y B . 

The probability of a tetrahedron falling on a certain face (specific) on 

the table, in the classical sense, is equal to 0,25. Let's count  

2 1( ) ( )
4 2

P Y P B   , 1( )
4

P Y B  . 

Then by property 6
0
 we get 

31 1 1( ) ( ) ( ) ( )
2 2 4 4

P Ж C P Ж P C P Ж C       .   ► 

 

6
0
1. (Generalization 6

0
). It is easy to get such a result 

( ) ( ) ( ) ( )P A B C P A P B P C     

( ) ( ) ( ) ( )P A B P A C P B C P A B C    . 

Remark 1. The theorem of adding probabilities in the case when events 

are incompatible is formulated as follows: the probability of the sum of 

events is equal to the sum of their probabilities:  

( ) ( ) ( )P A B P A P B     if  A B  . 

 

Remark 2. If the probability of an event is zero, it does not mean that 

the event is impossible. 

For example, we select a number on the segment [0, 1]. Consider the 

event: "the selected number is rational". This event is possible, but the 

measure of the corresponding set is zero and therefore the probability of the 

event is zero. 

But if the event is impossible, then its probability is zero. 

Therefore, the equality ( ) ( ) ( )P A B P A P B   is fulfilled not only in 

the case when A B  , but also when the probability of a possible event is 

zero (this follows from the previous remark 2).  
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§6.  Conditional probabilities 

 

Let the probability space ( , , )P  be given. Suppose that some event 

B  has occurred. If some other event A  is given, then the question 

naturally arises: does the probability of event A depend on whether it is 

known whether event B has taken place, or whether nothing is known about 

event B? 

 

Example. Two dice are rolled. The space of elementary events   in 

this experiment consists of 36 elementary events.    is the set of all subsets 

of the set   . Let the event B={ at least one of the two dice has one point}, 

i.e 

{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (3,1), (4,1), (5,1), (6,1)}B  . 

Let the event A={sum of points on two dice does not exceed four}. That 

is {(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)}A  . 

Let's calculate the probability of event A:  P A =6/36=1/6. Suppose 

that information has been received that event B has occurred. Let's find the 

probability  took placeB
P A  of event A, given that event B has occurred. 

There are 5 beneficial consequences in the set A. But now the space of 

elementary events is not  , but the set B, because it is known that the event 

B occurred. And the total number of elementary events is 11. Therefore 

 took place
5 11

B
P A   

Let's find  P A B . There are 5 common elements in A and B, and the 

entire space   contains 36 elementary consequences, that is, according to 

the classical definition of probability,   5/36P A B  . Note that 

  11/36P B  . After analyzing the last three probabilities, we come to the 

conclusion that in this example 
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 took place

( ) 5 / 36 5 11
( ) 11/ 36

B

P A B
P A

P B
    

Let's summarize this example. 

Definition 1. Let B be an event such that   0P B  . Then the 

conditional probability of event A, provided that event B has occurred 

(denoted by ( )
B

P A  or ( | )P A B ), is called the ratio of the probability of the 

product of events A and B to the probability of event B: 

 
( )

( ) |
( )

B

P A B
P A P A B

P B
  . 

 

 

Properties of conditional probability 

 

1
0
.   

   
| 1

( ) ( )

P B P B
P B

P B P B


    .    | 1P B B  .  | 0P B  . 

2
0
.      |P A B P B P A B   – this is equivalent to the definition of 

conditional probability. 

3
0
.  If   0P A   and   0P B  , then 

         | |P A B P B P A B P A P B A     

– is the theorem of multiplication of probabilities: the probability of the 

product of events is equal to the product of their probabilities, one of the 

cofactors is a conditional probability. 

Consider a generalization of the multiplication theorem. Let it be found  

       | |P A B C P A P B A P C A B   . 
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This is a formal notation, because it is necessary that all probabilities on 

the right side of the equality exist. So that it is not formal, taking into account 

that A B A  we get ( ) ( )P A B P A . 

Therefore, it is sufficient to require that ( ) 0P A B   and then all 

conditional probabilities in the theorem of multiplication of probabilities 

exist. 

Definition 2. Events A and B are called independent if  

     P A B P A P B  . 

It is easy to understand that events A and B are independent if and only 

if ( | ) ( )P A B P A  (if it is known that   0P B  ) or ( | ) ( )P B A P B  (in the 

case when   0P A  ). 

The concepts of independence of events and incompatibility of events 

do not coincide. Events can be independent but compatible, or incompatible 

but dependent. 

Example. Consider a rectangle, which is the space of elementary 

events. Two parts of this rectangle A and B have a common area as shown in 

the figure. 

It is clear that S a b

  , 1

4
A

S a b  , 1

3
B

S a b  , 1

12
A B

S a b  . Then 

1( )
12

P A B  , 1( )
4

P A  , 1( )
3

P B  ,      P A B P A P B  . Therefore, 

the given events A and B are compatible but independent. 

We will formulate and prove the main properties of independent events. 

       y  

      b  

             
   

     
1
3
b  

          
1
4
a             a   x  

 

A

B
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Statement 1. If events A and B are independent, then events A  and B 

are also independent, events A and B  are independent, and events A  and B  

are independent. 

Statement 2. If events A and 
1

B  are independent, events A and 
2

B  are 

independent, events 
1

B  and 
2

B  are incompatible (i.e. 
1 2

B B ), then 

events A and 
1 2

B B  are independent. 

The condition of incompatibility of events 
1

B  and 
2

B  is essential and is 

not only of a technical nature for proof. 

Definition 3. Events 
1 2
, ,...,

n
А А А  are called pairwise independent if 

for any i, j such that 1 , 1 ,i n j n i j      the probability of the product 

of events 
i

A  and 
j

A  is equal to the product of their probabilities  

( ) ( ) ( )
i j i j

P А А P A P A  . 

Definition 4. Events 
1 2
, ,...,

n
А А А  are called independent in the 

aggregate if for any set of indices 
1
,...,

k
i i , such that 

1
1 ...

k
i i n    , 

2 k n  , the equality holds: 

1
1

( )
j j

kk

i i
j

j

P А P A




 
 

 
 . 

It is clear that from independence in the aggregate follows pairwise 

independence. The question arises whether these concepts are not equivalent? 

That is, does pairwise independence result in aggregate independence? The 

answer to this question is negative. Independence in the aggregate does not 

follow from pairwise independence (this is evidenced by the example of 

S.N.Bernshtein

). 

                                                             
 Serhii Natanovich Bernshtein (1880-1968) was a Soviet mathematician. 
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The example of Bernstein. Consider such a stochastic experiment. A 

tetrahedron whose faces are painted is tossed up (one face is yellow, the 

second is blue, the third is red, and the fourth is painted with all three colors) 

and the event is tracked in which color the face of the tetrahedron is painted, 

with which it will fall on the table. The following events are considered: 

Y - on the face that fell on the table there is a yellow color; 

B – the face that fell on the table is blue; 

R – the face that fell on the table has a red color. 

We will show that these events are pairwise independent, but not 

independent as a whole. 

We consider all faces to be equal, and therefore the probability of a 

tetrahedron falling on a table (specifically) is 0.25, in the classical sense. 

Let's calculate  

2 1( ) ( ) ( )
4 2

P Y P B P R    . 

Let's check the pairwise dependence of events:  

1 1 1( ) ( ) ( )
4 2 2

P Y B P Y P B     . 

It follows that events Y and B are independent. Similarly, 

1 1 1( ) ( ) ( )
4 2 2

P Y R P Y P R     , 1 1 1( ) ( ) ( )
4 2 2

P B R P B P R     . 

That is, the events Y and R and B, R are independent, and therefore the 

events Y, B, R are pairwise independent. Are they independent in aggregate? 

Because 

1 1 1 1( ) ( ) ( ) ( )
4 2 2 2

P Y B R P Y P B P R       , 

then the events Y, B, R are not independent as a whole. 
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§7.  Formulas of full probability, Bayes 

 

Let the probability space ( , , )P  be given. A stochastic experiment 

is conducted in which some event B with   is observed. Let also be given 

some events 
1 2
, ,...,

n
H H H , 

i
H  , which are incompatible, that is, 

i j
H H  , i j . If B causes the sum of events 

1

n

i
i

H


, i.e. 
1

n

i
i

B H


 , then it 

is said that events 
1 2
, ,...,

n
H H H  are hypotheses about event B (make up a 

system of hypotheses about event B). If 
1

n

i
i

H


  , then the system of 

hypotheses is said to be complete. 

 

In the left figure, the system of hypotheses is complete. 

Suppose that a set of hypotheses is given regarding the event B and the 

probability ( ) 0
i

P H  , 1,i n . Event B can be written as follows:  

1 1

( )
n n

i i
i i

B B H B H
 

 
  

 
 

(the distributional property of probability is used here). 

Since 
i

H  are disjoint (incompatible events), then ( )
i

B H  and 

( )
j

B H  are also incompatible, i.e.: ( ) ( )
i j

B H B H   , ( )i j . 

 

                                                                                

      
2

H  
3

H    

 

                                    
4

H   

                                    B  

                     
5

H  

    
1

H        

                                    
6

H  

 

      

       
4

H  

                        
3

H      

          
2

H                           B  

                   
5

H  

 

          
1

H        

                                    
6

H  
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Therefore, the probability of the sum of events is equal to the sum of the 

probabilities of these events:  

             
1

1

( ) ( ) ( )
nn

i i
i

i

P B P B H P B H




  ,   ...(1) 

but  

                  ( ) ( ) ( | )
i i i

P B H P H P B H  .     ...(2) 

Substituting equalities (2) into (1), we obtain:  

1

( ) ( ) ( | )
n

i i

i

P B P H P B H


   

– is the formula of total probability. 

 

Let us now additionally assume that ( ) 0P B  . Then, generally 

speaking, it would be possible to write: 

   ( ) ( ) ( | )
i i

P B H P B P H B  .    ...(3). 

So, equating (2) and (3), we can write the following: 

( ) ( | ) ( ) ( | )
i i i

P H P B H P B P H B   ,   1,i n . 

From here we determine ( | )
i

P H B : 

( ) ( | )
( | )

( )

i i

i

P H P B H
P H B

P B


 ,   1,i n , 

but the full probability formula can be used in the denominator. Then we get: 

1

( ) ( | )
( | )

( ) ( | )

i i

i n

k k

k

P H P B H
P H B

P H P B H






,   1,i n  

– Bayes
*
 formula. 

 

                                                             
*
 Thomas Bayes (1702-1761) is an English mathematician. 
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The essence of these formulas is as follows: according to the formula of 

full probability – it is possible to calculate the full (unconditional) probability 

through conditional probabilities; Bayes' formula – if it is known that some 

event has occurred, then such additional information makes it possible to 

recalculate (reevaluate) the hypotheses and obtain the probabilities of the 

hypotheses, provided that some event has occurred. 

We emphasize that 
1

( | ) 1
n

i

i

P H B


 . Formally, it is easy to get: 

1

( ) ( ) ( | )
n

i i

i

P B P H P B H


   and dividing by ( )P B  we get that 

1

( | ) 1
n

i

i

P H B


 . Although, it is important to emphasize that 
1

( ) 1
n

i

i

P H


 , 

and here equality is achieved only in the case of a complete system of 

hypotheses, that is, when 
1

n

i
i

H


  , and the left part will be strictly less than 

one when 
1

n

i
i

H


 . 

Example. There are white and black balls in two boxes. The first of 

them has three white and four black balls, the second has two white and one 

black. From the first box, two balls are randomly transferred to the second, 

after that, one ball is taken out of the second. The questions are: a) what is the 

probability that a white ball is drawn? b) what is the probability that two 

white balls were transferred from the first box to the second, if the ball 

removed from the second box turned out to be white? 

◄  Let's denote the event B – a white ball is taken out of the second 

box. We will put forward the following hypotheses: 

1
H  – two white balls were transferred from the first box to the second; 

2
H  – one white and one black ball was transferred from the first box to 

the second; 

3
H  – two black balls were transferred from the first box to the second. 
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These hypotheses are incompatible and form a complete group of 

events (hypothesis). Taking into account the notations adopted in point a) it is 

necessary to calculate ( )P B , and in point b) 
1

( | )P H B . 

2

3

1 2

7

3 2 1( )
7 6 7

C
P H

C

  


, 
1 1

3 4

2 2

7

2 3 4 4( )
7 6 7

C C
P H

C

    


, 

2

4
3 2

7

4 3 2( )
7 6 7

C
P H

C

  


, 1

4( / )
5

P B H  , 2

3( / )
5

P B H  , 3

2( / )
5

P B H  , 

3 201 4 4 2 2 4( )
7 5 7 5 7 5 35 7

P B         , 1

1( / )
5

P H B  . 

Note that the probability of the first hypothesis was equal to 1

1( )
7

P H  , 

and as a result of the experiment, when it became known that a white ball 

was taken out of the second box, it was reassessed and 1

1( / )
5

P H B   was 

obtained. 

The problem can be solved by putting forward another system of 

hypotheses: 

4
H  – the ball that was removed from the second box was initially in the 

first box; 

2
H  – the ball that was removed from the second box was originally in 

the second box. 
These hypotheses are also incompatible and form a complete group of 

events. Then   

1

2( )
5

P H  , 2

3( )
5

P H  , 1

3( / )
7

P B H  , 2

2( / )
3

P B H  , 

3 32 2 4( )
5 7 5 3 7

P B      .  ► 

                   2 balls            1 ball 

 

 

        3 white            2 white 

        4 black            1 black 
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§8.  Scheme of independent tests. 

Bernoulli's law (binomial law) 
 

Suppose that the same experiment is carried out many times under the 

same conditions. The results of previous experiments do not affect the results 

of subsequent experiments and, naturally, the results of subsequent 

experiments do not affect the results of previous ones (this is the 

independence of tests). In each experiment, some event A is observed (event 

A is observed). The probability of the occurrence of this event in each of the 

experiments is known and is equal to ( )P A p . The question is what is the 

probability that in a series of experiments an event A occurs (will be 

observed) a certain number of times? 

We will assume that a series of n experiments is conducted. Let's ask 

the question: what is the probability that in a series of n experiments event A 

will occur m times, where, of course, 0 m n  ? The probability that event A 

will occur in m experiments is denoted by ( )
n

P m . 

The space of elementary events   can be presented in the form 

... , ... , ... , ... ,..., ...
n n n n n

AAAAA A AAAAA A AAAAA A AAAAA A AAAAA A
 

   
 

 

There are 2n  total points in the space  , because there are n positions, and 

each position can be A or A . Each such point must be assigned a probability. 

Let's denote ( ) 1 ( ) 1P A P A p q     . Then, since all experiments are 

independent, each point (event) is matched with products: point ...AAAAA A  

should be matched with ...ppppp p , point ...AAAAA A should be matched 

with ...ppqpq p , point ...AAAAA A , respectively, with ...qqqqq q , etc. It is 

easy to see that the sum of the matched probabilities is one, indeed, this sum 

is actually 
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0

1 ( )
n

n m m n m

n

m

p q C p q 



   . 

Let's highlight those elementary results of the experiment in which the 

event A occurred m times, that is, those points (events) from the set  , in 

which m places are occupied by event A, and the remaining n m places are 

occupied by event A . The probabilities corresponding to such events (points) 

are equal to m n mp q  . And there are m

n
C  such points, that is, we get: 

( ) m m n m

n n
P m C p q   

– Bernoulli's formula for 0,1,2,...,m n . 

In practice, the Bernoulli

 formula can be used for fairly small values of 

n (due to the complexity of the calculations). 

 

 

p.8.1.  The most probable number 

 

Suppose that a certain number of experiments are conducted. At the 

same time, a certain event can appear (happen) a certain number of times. 

The probability ( )
n

P m  is calculated by Bernoulli's formula. The question 

arises: for which value of m is the greatest probability ( )
n

P m . In fact, it is 

necessary to investigate the function ( )
n

P m  as a function of the argument m: 

we are interested in which m value of the function ( )
n

P m will be the largest. 

Such m is called the most probable number. 

Derivative methods cannot be used to find the maximum point of a 

function, because the function is not continuous. Therefore, consider the 

relationship: 
1 1 1( 1) ( )

( ) ( 1)

m m n m

n n

m m n m

n n

P m C p q n m p

P m C p q m q

   



  
 

 
. 

                                                             
 Jakob Bernoulli (1655-1705) is a Swiss mathematician. 
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Let's investigate at what values of m this ratio is greater than unity (then 

the function ( )
n

P m  increases), and when the ratio is less than unity (then the 

function ( )
n

P m  decreases). We get: 

1) 1
1

pn m

m q

  


, from here  np mp mq q   , therefore  ( )np q m q p    

and m np q  . Тhat is, if m np q  , then ( 1) ( )
n n

P m P m  , and therefore 

the function ( )
n

P m  increases; 

2) similarly, 1
1

pn m

m q

  


, then np mp mq q   , hence ( )np q m q p    

and m np q  . That is, if m np q  , then ( 1) ( )
n n

P m P m  , and therefore 

the function ( )
n

P m  decreases; 

3) 1
1

pn m

m q

  


, hence m np q  , that is, the probability takes the same 

values at m and 1m  : ( 1) ( )
n n

P m P m  . 

But m can only be an integer. So, the conclusion is as follows: if 

m np q   is an integer, then there are two most probable numbers: 

0
m np q    and 

0 0
1m m np p      

(because 1 (1 )np q np q np p       ); 

if m np q   is not an integer, then there is one most probable number 

0
[ ] 1m np q   , or 

0
[ ]m np p  , 

here [.] is a whole part of the argument. 

 

               1 
 

 

 

 

 

 

              np q   np p  

        0      1      2       3     4       5      6      7  m  
                

0
m  

               ( )nP m  
 

               1                  np q  – is an integer 
 

 

 

 

 
 

                          np q    

        0      1      2       3     4       5      6      7  m  

                
0

m    
0

m  

               ( )
n

P m  



32 

Algorithm for finding the most probable number: 

1) calculate np ; if np  is an integer, then 
0

m np ; 

2) if np  is not an integer, then calculate np q ; 

3) if np q is not an integer, then the most probable number 
0

[ ] 1m np q   ; 

4) if np q  is an integer, then there are two most probable numbers  

0
m np q    and 

0
m np p   . 

The most probable number 
0

m  (if it is unique) is between the numbers 

np q  and np p  , that is, it can be found by the following formula 

0
np q m np p    . 

 

p.8.2.  Binomial distribution 

 

Consider the scheme of independent tests. A set of numbers 

 ( ), 0, 1,...,
n

P k k n  is called a binomial probability law or binomial 

probability distribution. 

Closely related to the independent trials design is another probability 

distribution called the geometric probability distribution. 

Consider such a stochastic experiment. Let us be interested in a certain 

event A, which appears in each experiment with probability p. We will 

conduct a series of experiments until the first occurrence of event A. Let 

( )B m  denote the event, which consists in the fact that m experiments must be 

conducted before the occurrence of event A. The space of elementary events 

here is as follows:  

, , , ,..., ... ,...
m

A AA AAA AAAA AA A A
 

   
 

. 

It is clear that the probability of the event ( )B m    

( ( )) mP B m q p ,  0,1,2,...m  . 
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The set of numbers  , 0,1,2,...mq p m   is called a geometric 

probability distribution. 

Note that the sum of such numbers is equal to one. This probability 

distribution has the property of no aftereffect. 

We denote by ( )B k  the event, which consists in the fact that at least k 

experiments must be conducted before the first occurrence of event A. Let's 

write the following property: 

 ( ) | ( ) ( ( ))P B m n B n P B m    

This property is called the property of the absence of an aftereffect in 

the geometric distribution. We make sure that the last formula is correct. 

 

◄ By definition of conditional probability  

 
( ( ) ( ))

( ) | ( )
( ( ))

P B n m B n
P B m n B n

P B n

 
  


, 

but ( ) ( )B n B n m   , so ( ) ( ) ( )B n m B n B n m    . In addition,  

( ) ( ) ( 1) ( 2) ...B n B n B n B n     

and the events written on the right are incompatible, so the probability of the 

sum of events is equal to the sum of the probabilities of these events:  

0

1( ( )) ( ( ))
1

i n i n n

i n i n i

P B n P B i p q q p q q p q
q

  

  

          


   . 

So  

 
( ( ))

( ) | ( ) ( ( ))
( ( ))

n m
m

n

P B n m q p
P B m n B n q p P B m

P B n q

 
      


. ► 

It can also be proved that the only probability distribution that has the 

property of no aftereffect is the geometric distribution. 
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§9.  Limit theorems in the scheme of independent tests 

 

Bernoulli's formula is not convenient to use for large ones due to the 

complexity of the calculations. In order to simplify the calculations, the 

accuracy of the calculations must be sacrificed (the probability does not 

change). 

 

p.9.1 The local Moivre-Laplace theorem 

 

Theorem 1 (local Moivre-Laplac theorem). 

Let the parameters p , q , 0p  , 0q  , 1p q   be used in the scheme 

of independent tests. If 
,n m

m np
x

npq


  is uniformly bounded by a constant C, 

that is, ,
| |

n m
x C  and the limit lim

n
npq


  , then 

21
,2

2 ( )
lim 1

n m

n

xn

npqP m

e




 . 

In the formulation of the theorem, instead of uniform boundedness ,n m
x , 

it was possible to write: there exists a constant C such that ,
| |

n m
x C . The 

condition lim
n

npq


   is clear when p and q are constant. But experiments 

are possible in which p and q change as n increases. This theorem is also true 

for such cases, so this condition is in the theorem. The conclusion of the 

theorem is equivalent to the fact that the numerator and denominator are 

equivalent, that is,  
21

,21( )
2

n mx

n
P m e

npq


 . 

                                                             
 Abraham De Moivre (1667-1754) is an English mathematician of French origin. 


 Pierre-Simon Laplace (1749-1827) is a French mathematician. 
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That is, the theorem proves the following approximate equality: 

 
21

,21

2

n mx

n
npqP m e




 . 

Or, from here 

   ,

1m m n m

n n n m
P m C p q x

npq
  , 

where 

 
21

21

2

x
x e




  

– is a tabulated function. 

 

So, the algorithm for calculating  n
P m  for large n is as follows: 

1. Calculate ,n m
x . 

2. Find  ,n m
x  according to the tables. 

3. Calculate  n
P m  according to the formula 

   ,

1
n n m

P m x
npq

 . 

 

The question arises: at what n can the theorem be used? If you write out 

the remaining terms and carry out all the calculations carefully, you can make 

sure that the theorem is applicable even when 5npq   (even when 

4npq  , although the error is approximately 25%). 

The formulated theorem is called local, because it estimates the 

probability  n
P m  that exactly m times the event occurred. 
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p.9.2. Moivre-Laplace integral theorem 

(a consequence of the local theorem) 

 

Theorem 2 (Moivre-Laplace integral theorem). Under the conditions 

of Theorem 1, for any a and b ( )a b     , the probability that 

,n m
a x b   is approximately equal to 

21
2

,
1{ }
2

b
x

n n m

a

P a x b e dx




    . 

 

Let's analyze how to apply Theorem 2. Suppose that we need to 

calculate the following probability: 
1 2

{ }
n

P k m k  . It is clear that 

1 2 1 2
{ } { }

n n
P k m k P k np m np k np          

1 2

,n n m

k np k np
P x

npq npq

   
   

  

. 

We denote 1
k np

a
npq


 , 2

k np
b

npq


  and now we can apply Theorem 2.  

Thus, to find the probability 
1 2

{ }
n

P k m k   we need 

1. calculate 1
k np

a
npq


 , 2

k np
b

npq


 ; 

2. apply Theorem 2. 

 

Example 1. Let 100 experiments be conducted ( 100n  ). Let the 

probability of a certain event be 0,5p   in each experiment. Then 0,5q  . 

What is the probability that in a series of 100 experiments this event will 

occur 60 times? 
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◄ From the condition of the problem 10 0,5 5npq    . Therefore, 

theorem 1 can be applied. Under the condition of the problem, 60m  . Let's 

calculate ,n m
x : 

,

60 100 0,5 10 2
5100 0,5 0,5

n m
x

 
  

 
. 

Then by Theorem 1 

 
2

22

100

1 1 1 1 1 160 (2) 0,054 0,0108
5 5 52 2

x

P e e
npq


 


          . ► 

 

Example 2. Find the probability that in the same experiment the event 

will occur at least 40 times and not more than 60 times? 

◄         
40 60

40 60
np m np np

P m P
npq npq npq

    
      

  

 

22

2

2

12 2
2

xm np
P e dx

npq 





  
     

  
 . 

Such an integral is calculated according to the tables. The tables are different, 

but the tables of the following function  

2

2
0

0

1( )
2

x t

x e dt




   , 0x   

are most often given. 

Then 

 0
{40 60} 2 2 2 0,4772 0,9544P m       .   ► 

 

Sometimes there are tables of functions 
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2

2
1

1( )
2

x t

x e dt






   , for 0x  or 0x  . 

All these functions can be simply obtained from each other, if we 

consider that the graph of the function 

2

21( )
2

x

x e




  

has the form as in the figure 

and that the Poisson

 integral  

2

2 2
x

e dx 






 . 

For example, at 0a   and 0b   and the tables of the function  1
x  at 

0x  , we have that the required area is equal to    1 1
1 a b   . 

 

                                                             
 Simeon-Denis Poisson (1781-1840) is a French physicist and mathematician. 

            ( )x  

          

   

  
 

 

                     x  

 

        ( )x  

          

   

  

 

 

                     x 

                      a       b   
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p.9.3 Poisson's theorem (theorem about rare events) 

 

Theorem 3. Suppose that the condition of Theorem 2 that npq   is 

not fulfilled when n , but there is a constant C such that .
n

a np C  . 

Then, when n , the probability  

( )
( )

!
n

m
an

n

a
P m e

m


 . 

 

The name of the theorem is related to the fact that here the probability p 

of the occurrence of the event is close to zero (going to zero). There is also a 

case where the probability q of the non-occurrence of the event approaches 

zero, but then the probability of the occurrence of the event p approaches 

one, and it is possible to move to the opposite event, the probability of which 

will already approach zero. 

This theorem should be used when 0,02p   and sufficiently large n. 

The set of numbers 

 , 0, 1, 2,...
!

m

e m
m

    

for >0 forms a probability distribution called the Poisson distribution. 

In fact, the theorem states that for small p, the limiting distribution for 

the binomial probability distribution is, for n , the Poisson distribution 

with parameter 
n

a np   . 

Tables for different   and m have been compiled for the function 

!

m

e
m

 
. The function 

0 !

x m

m

e
m

 



  is often tabulated. Using these tables, you 

can easily solve problems about finding ( )P m . 
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CHAPTER 2 

RANDOM VARIABLES 

 

§1. The concept of a random variable 

 

 

The following concepts were considered above: stochastic experiment, 

frequency, space of elementary events, distribution, random event. Let's 

consider a new concept of a random variable, which will be defined with the 

help of the already introduced concept of a random event. 

A random variable is a variable that can take on different values in 

different cases. Examples of random variables can be the number of points 

that fell out in one toss of a dice, the number of defective products among n 

products taken at random, the number of hits on the target with n shots, the 

time of the device's trouble-free operation, the flight range of the rocket, etc. 

The random variable   is a number that corresponds to each possible 

outcome of the experiment. Since the results of the experiment are described 

by elementary events, the random variable can be considered as a function 

     on the space of elementary events   . 

Before formulating the definition of a random variable, let's consider a 

few examples. 

Example 1. Consider the following stochastic experiment – a coin is 

tossed twice. The space of elementary events has the form 

 , , ,CC CF FC FF  . 

Let   be the number of appearances of the coat of arms. The value   is a 

function      of an elementary event (an elementary result of an 
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experiment). The table of values of the function     has the following 

form: 

Example 2. A dice is thrown. In this case, the space of elementary 

events has the following form:  

 1 2 3 4 5 6
, , , , ,       , 

where 
i

  means that i points have fallen. The random variable   – the 

number of points dropped – is a function of an elementary event, and 

  i   , if i
  . 

Example 3. A coin is tossed until a coat of arms appears. In this case 

1

, , , ,..., ... ,...
n

C FC FFC FFFC FF FF C


 
   

 
 

 1 2 3 4
, , , , ..., , ...

n
     . 

Let   be the number of coin flips. Then the quantity   is a function of 

the elementary event, and   n    if n
   ( 1, 2,...)n  . 

These examples confirm that random variables can be interpreted as 

functions on the space of elementary outcomes of a stochastic experiment. 

We are dealing with the function   :   . This is a reflection that 

assigns points   from the space of elementary events   with a number. 

Considering the  , , P  probability space, only those events that are 

included in  can be studied, because only those events are assigned with 

the number P. The same function     under consideration can be matched 

 

  CC CF FC FF 

( )   2 1 1 0 
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with the following events   0   ,…,   s    ,…, which are random 

events. These events can be studied if they are included in the class of events 

. In the future, we will consider reflections     such that for any x , 

the event   x    is an element of the class of events , that is, 

  x    . 

Definition 1. The reflection   :    is called a random variable 

if, for any real x, the event   : x     belongs to the class of events . 

It can be proved that if     and     are two random variables, then 

        are also random variables, and  a    is also a random 

variable. Therefore, a linear combination of random variables is also a 

random variable. In addition,         is a random variable, 
 

 

 

 
 is a 

random variable, if the probability is   0 0.P      

Let     be a random variable, i.e., for any x , the event 

  : x     is an element of the class of events , then the probability of 

this event is determined. This probability      : .P x P x       is 

denoted by ( )F x . 

Definition 2. Function 

    :F x P x      

is called the distribution function of the random variable    . 
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§2. Properties of the distribution function of a random variable 

 

1
0
.The distribution function ( )F x  is defined on the entire numerical axis 

(because the definition requires it). 

2
0
. For any real x, the distribution function is 0 ( ) 1F x   (because it is a 

probability). 

3
0
. The distribution function ( )F x  is non-decreasing. 

4
0
. lim ( ) 0

x
F x


 ,  lim ( ) 1

x
F x


 . 

5
0
. The distribution function of a random variable is continuous on the left, 

i.e 

0

0
0

lim ( ) ( )
x x

F x F x 
 

 . 

6
0
. For any real a and b connected by the relation a b , the equality holds 

{ : ( ) } ( ) ( )P a b F b F a       . 

7
0
. The probability that the random variable ( )   takes a value that does not 

exceed 0
x  is equal to the value of the distribution function at the point 0

x  

on the right, i.e. 

0 0
{ : ( ) } ( 0)P x F x      . 

8
0
. The probability that the random variable ( )   takes a fixed value 0

x  is 

equal to the jump of the distribution function at the point 0
x , i.e. 

0 0 0
{ : ( ) } ( 0) ( )P x F x F x        . 
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If the distribution function is continuous, then the probability of a 

random variable taking any particular value is zero. 

Theorem (Riesz’s

). Let some function ( )F x be defined on the entire 

numerical axis, non-decreasing, continuous on the left and such that 

lim ( ) 0
x

F x


  and lim ( ) 1
x

F x


 . Then there is such a probability space 

( , , )P  and such a random variable ( )   on it that the distribution 

function of the random variable ( )   will be the function ( )F x , i.e. 

( ) ( )F x F x  . 

In fact, this theorem states that the defining properties of the 

distribution function of a random variable are monotonicity, continuity on the 

left, and normalization (equal to zero on   and one on  ). 

 

Example 1. Consider a random variable ( )   that takes two values 0 

and 1 with probabilities q and p, respectively (such a random variable is 

called an event indicator – the number of occurrences of an event in one 

trial). It is convenient to record this in the following table: 

0p  ,   0q  ,   1p q  . 

 

Then the distribution function of the random variable ( )   and its graph 

have the following form: 
 

0, 0,

( ) , 0 1,

1, 1.

x

F x q x

x






  
 

 

 

At the point 0x  , a jump in the value of the function by the amount q is 

{ ( ) 0}P    , and at the point 1x  , a jump by the amount p and, 

accordingly, { ( ) 1}P p    . 
                                                             
 Frigyes Riesz (1880-1956) is a Hungarian mathematician. 

 

( )   0 1 

P q p 

 

                   ( )F x  

        1 

 

            q 
 

 

                     1                    x    
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Example 2. Let the random variable ( )   take three values -1, 2 and 4 

with the following probabilities: { ( ) 1} 0,5P      , { ( ) 2} 0,25P      і 

{ ( ) 4} 0,25P     : 

Then the distribution function of the random variable ( )   and its 

graph have the following form: 

 

0, 1,

0,5, 1 2,
( )

0,75, 2 4,

1, 4.

x

x
F x

x

x



 


  
 

 
 

 

 

 

Example 3. Let the random variable ( )   take n values 1 2
, ,...,

n
x x x

with probabilities: { ( ) }
i i

P x p    , 1, 2,...,i n . 

 

Here 1 2
...

n
x x x   ,   1 2

... 1
n

p p p    . Let's write ( )F x  

analytically. 

1

1

:

0, ,

( ) , ,

1, .

i

i n

i x x

n

x x

F x p x x x

x x









  

 

  

 

  

 

( )   -1 2 4 

P 0,5 0,25 0,25 

 

                     ( )F x  

               1 

          0.75 
               

            0.5 

 

       -1        0      1         2       3       4       5      x 

 

( )   
1x  

2x  
3x  … 

nx  

P 1p  2p  3p  … 
np  
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Example 4. Let's write the following function ( )F x  for 

a b    : 

   

0, ,

( ) , ,

1, .

x a

x aF x a x b
b a

x b



 
   




     ... (1) 

This function is continuous, non-decreasing, equals zero at   and 

equals one at  . Therefore, according to the Riesz’s theorem, it is a 

function of the distribution of some random variable. 

If the distribution function of the random variable ( )   has the form 

(1) then we say that this random variable is uniformly distributed over the 

interval [ , ]a b . 

 

Example 5. If the distribution function of a random variable ( )   has 

the form  

 
2

2

( )

21

2

x
t a

F x e dt


 

 



  , 

then we say that the random variable ( )   is normally distributed with 

parameters a and   ( , , 0)a    . 

.                            ( )F x  

 

 

             1 

 

 
                a                                b                            x  
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The fact that a random variable is normally distributed with parameters 

a and   is written as follows: ( , )N a  . Such a random variable is often said 

to be Gaussian

 distributed with parameters a and   . 

 

The question arises: can the function  

 
2

2

( )

21

2

x
t a

F x e dt

 

 



   

 be a distribution function? The graph of this function is shown in the figure 

It is continuous, non-decreasing, and since at x   it is a Poisson function, 

then  F x  is a distribution function of some random variable. 

For  0 1Ν ; , such a function was already considered  

 
2

21

2

x
t

F x e dt






   

and called the Laplace function. 

 

  

                                                             
 Johann Carl Friedrich Gauss (1777-1855) is a German mathematician, astronomer, 

surveyor and physicist. 

 

           ( )F x  

     1 

 

    

      a                   x  
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§3. Classification of random variables 

 

Let some random value   :    be given on the probability 

space  , , P . 

If a random variable     takes no more than a countable number of 

values, then such a random variable is called a discrete random variable. 

These values it takes are denoted by 
1 2
, ,..., ,...

n
x x x . The corresponding 

probabilities 
1 2
, ,..., ,...

n
p p p , where  

  i i
p P x   ,  1, 2, 3,...i  ,  1

i

i

p  , 

must also be given. That is, the following table is actually set: 

Thus, the random variable is fully specified and its distribution function 

can be written: 

 
: i

i

i x x

F x p



  . 

Therefore, the distribution function of a discrete random variable has no 

 

( )   
1x  2x  … 

nx  … 

P 1p  2p  … 
np  … 

 

1
p  

                     ( )F x  

                 1 

           

           
                   

                  

 

       
1

x            
2

x    
3

x               
n

x                       x 
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more than the number of growth points (
0

x  is called a growth point for 

 F x  if the inequality  

   0 0
0F x F x       

holds for any 0  ). 

If the distribution function of a random variable is absolutely 

continuous, then the corresponding random variable is called absolutely 

continuous, or simply continuous. 

In the theory of probabilities, only continuous and discrete random 

variables are studied. 

A completely continuous distribution function can be represented as 

   
x

F x f u du 



  ,             ... (2) 

where   0f u   is a piecewise continuous function. 

Therefore, sometimes the definition of a continuous random variable is 

given as follows: a random variable is called continuous if it can be written 

in the form (2). 

A piecewise continuous function  f x  is called the distribution 

density of a random variable. 

Therefore, a random variable is said to be continuous if it has a density 

distribution. 
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p 3.1. Properties of distribution density 

 

1
0
.   0f x  , x  . If this were not so, then the distribution function 

would not be monotonically nondecreasing. 

2
0
.   1f u du





 .  

◄ It must be so, because 

     lim lim 1

x

x x
f u du f u du F x  



 
 

     

by property 4
0
 of the distribution function. ► 

3
0
.    

b

a

P a b f u du    .    

◄ This property follows from property 6
0
 of the distribution function: 

            .

b a b

a

P a b F b F a f u du f u du f u du    
 

           ► 

If the distribution function  F x  is differentiable at the point x, then 

   F x f x 

  . 

Properties 1
0
 – 3

0
 of the distribution density are often used in problem 

solving. 

Example 1. Let 0a   and  

 

0, 0;

2, 0 ;

0, .

x

f x x x a

x a






    
 

 

Find the constant a. 
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◄ Let's use property 2
0
 of the distribution density: 

       
0

0

1

a

a

f u du f u du f u du f u du   

 

 

         

 
2

0

2 2
2

a

au du a      . 

Hence 
2 4 2 0,a a   1,2

2 2a   . What to choose a? It is clear from 

property 1
0
 that 2 2a   , because ( )f x  at 2 2a    will be less than 

zero: (2 2) 0f   . Therefore, 2 2a   . The area of the shaded part is 

equal to one (according to property 2
0
). Answer: 2 2a   . ► 

 

If information about a random variable is given in the form of a 

distribution function or distribution density of a continuous random variable 

or a table of values and corresponding probabilities of a discrete random 

variable, then the distribution law of the random variable is said to be given. 

 

Consider examples of density distributions. 

 

Example 2. For a uniform distribution on [ , ]a b , the distribution 

function  F x  was written 

 

        )( xf  

     

 2 

 

      
1 

           22           2        3 22       x 
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 

0, ;

, ;

1, .

x a

x aF x a x b
b a

x b



 
   




 

 

Then we get the distribution density 

 

0, ;

1 , ;

0, .

x a

f x a x b
b a

x b



 


  




 

 

It can also be written differently: 

 
 

 

0, , ;

1 , , .

x a b

f x
x a b

b a



 


 
 

 

 

Example 3. For a normal distribution with parameters a  and   the 

distribution function has the following form: 

 

 
2

2

( )

21

2

x u a

F x e du


 






   

 

 

Therefore, for ( , )N a  , the distribution density is written as follows: 

 

 
2

2

( )

21

2

x a

f x e 


 




  

 

 

 

             xF  

       1 

 

 

 a         b           x  

 
             xf  

 
 

   
ab

1  

 

 a           b               x  

 

)(xF  

 

        1 
 

        

         

        a                  x  

                 )(xf  

 

 

 

 

 

 

        a                  x  

 

 2

1
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Example 4.  If the distribution function  F x  of the random variable 

  has the form  

 
0, 0;

1 , 0.x

x
F x

e x
 


 

 
, 

then it is said that the random variable   is distributed according to the 

exponential law (exponential law) with the parameter  . 

Then you can write down the distribution density for a random variable 

distributed according to the exponential law: 

 
0, 0;

, 0.x

x
f x

e x
  


 


. 

It turns out that a random variable distributed according to an 

exponential law has the property of no aftereffect (a discrete random variable 

distributed according to a geometric law had this property). 

 

Example 5. A random variable is said to be distributed according to 

Cauchy's
*
 law if  

 
2

0, 0;

2 1 , 0,
1

x

f x
x

x








 


 

 

or  

 
2

1 1 ,
1

f x x
x




    


. 

Then the distribution function is written as follows:  

 
0, 0;

2 arctg , 0.

x

F x
x x






 




 

                                                             
* Augustin Louis Cauchy, 1789-1857 – French mathematician. 
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§4. Vector random variables 

 

Let the probability space ( , , )P  and n random variables on it 

1 2
( ), ( ),..., ( )

n
       be given. Since these are random values in the 

probability space, then for any 1, 2,...,i n   { : ( ) }
i

x    . The 

random variables  

1 2
( ), ( ),..., ( )

n
       

can be used to form a vector  

 1 2
( ), ( ),..., ( )

n
      , 

 which is called a random vector – it is a vector whose components are 

random variables. 

Since ( )
i
   are random variables, then  -set 

 1 1 2 2
: ( ) , ( ) ,..., ( )

n n
x x x         , 

where 1 2
( , ,..., ) n

n
x x x   ( 1 2

, ,...,
n

x x x  – are real numbers), belongs to 

. By this  -set we understand the intersection of the following sets:  

 1 1 2 2
: ( ) , ( ) ,..., ( )

n n
x x x           

     1 1 2 2
: ( ) : ( ) ... : ( )

n n
x x x             

belonging to . 

This means that there is a (defined) probability of such an event: 

 
1 21 1 2 2 ... 1 2

: ( ) , ( ) ,..., ( ) ( , ,..., )
nn n n

P x x x F x x x             

and this probability is called the compatible distribution function of the 

system of random variables 1 2
, ,...,

n
   . 
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Properties of the compatible distribution function 

 

 

1
0
. 

1 2 ... 1 2
( , ,..., )

n n
F x x x    is defined for 1 2

( , ,..., ) n

n
x x x  . 

 

2
0
.  

1 2 ... 1 2
0 ( , ,..., ) 1

n n
F x x x    . 

 

3
0
. 

1 3 2 1 2 31 3 2 1 2 3
( , , ) ( , , )F x x x F x x x      . 

 

4
0
.

1 2 2 3
1

... 1 2 ... 2 3
lim ( , ,..., ) ( , ,..., )

n nn n
x

F x x x F x x x     


 . 

 

It is often written like this: 

1 2 22 2
( , ) ( )F x F x    , 

1 2 11 1
( , ) ( )F x F x    . 

It is clear that 
1 2

( , ) 1F     . 

An equality holds for three variables, for example, the following: 

1 2 3 1 31 3 1 3
( , , ) ( , )F x x F x x      . 

So, if the compatible distribution function of random variables 

1 2
, ,..., ,

n
    is known, it is easy to find the distribution functions of each of 

the random variables 1 2
, ,..., ,

n
    separately, for example: 

1 2 11 1
( , , , ) ( )

n
F x F x      . 

The question arises whether it is possible to find a compatible distribution 

function based on the known distribution functions 
1 1
( )F x , 

2 2
( )F x ,…,

( )
n n

F x ? The answer is negative. 

 

4′
0
.  

1 2 1 2
lim ( , , , ) 0

n
i

n
x

F x x x  


 .  
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The event that 
1 1
( ) x    and 

2 2
( ) x    that is,  

1 1 2 2
{ : ( ) , ( ) }x x       

can be interpreted as the event that the random vector  1 2
( ), ( )     (that 

is, a random point on the plane) is in the corner with the vertex at the point 

with coordinates 1 2
( , )x x ) (that is, in the negative orthogonal shifted to the 

point with coordinates 
1 2

( , )x x ). 

 

5
0
. Probability  1 2

( ) , ( )P a b c d         

   1 2 1 2
, ,P b d P a d           

   1 2 1 2
, ,P b c P a c           

1 2 1 2 1 2 1 2
( , ) ( , ) ( , ) ( , )F b d F a d F b c F a c           . 

 

Definition. Two random variables 1 2
( ), ( )     are called 

independent if  

1 2 1 21 2 1 2
( , ) ( ) ( )F x x F x F x     , 

that is, if the compatible distribution function is equal to the product of the 

distribution functions. 

 

 

  

 
          2     

                 2x  

 

 

           1x      1  

 

   

  d  

 

 
  c  

 

            a        b  
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§5. Numerical characteristics of random variables 
 

 

In the previous section, several complete, comprehensive characteristics 

of random variables – the so-called distribution laws – were considered. Such 

characteristics were: for discrete random variables, the distribution function 

and the distribution series; for continuous random variables – distribution 

function and distribution density. 

Each distribution law is some function, and the definition of such a 

function completely describes a random variable from a probabilistic point of 

view. 

But in many practical issues, there is no need to characterize the random 

variable completely, comprehensively. It is often enough to specify only 

individual numerical parameters that to a certain extent characterize the 

essential properties of the distribution of a random variable: for example, 

some average value around which the possible values of the random variable 

are grouped; some number that characterizes the degree of dispersion of the 

values of a random variable around the average, etc. Such characteristics, 

which make it possible to express the most significant features of the 

distribution in a concise form, are called numerical characteristics of a 

random variable. 

In the theory of probabilities and mathematical statistics, many different 

numerical characteristics are used, which have different purposes and 

different areas of application. In this section, we will consider only some of 

them, which are most often used. 

 

 

Consider a scalar random variable   on the probability space  , , P  

with the distribution function ( )F x . 
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Definition 1. The mathematical expectation of a random variable   is 

called the number E , which is equal to  

( )E xdF x




  , 

if such an integral absolutely coincides, that is, if an Stilltjes integral exists 

| | ( )x dF x





  . 

If the integral does not coincide absolutely, then it is said that the 

mathematical expectation does not exist. 

Assume that   is a discrete random variable. Then the distribution 

function is piecewise constant. 

If the piecewise constant function ( )F x  changes its values only at 

points 1 2, ,..., ,...kc c c  and the function ( )f x  is continuous on [ , ]a b , then the 

Stieltjes integral ( ) ( )f x dF x





  is the following sum: 

 
1

( ) ( 0) ( 0)k k k

k

f c F c F c




   . Using ( ) ( )F x F x  and ( )f x x  in this 

sum, we get 

1

( 0) ( 0)k k k

k

x F x F x 





     . 

 

  
1x  2x  3x  … kx  … 

P  1p  1p  3p  … kp  … 

                              )(xF  

                        1                                                                                 … 

       

 321 ppp        

           
21 pp   

        
1p  

 

           1x   2x   3x   4x     x  
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But the jump of the distribution function at the point kx , according to 

property of the distribution function, is equal to 

( 0) ( 0) ( 0) ( ) { }k k k k k kF x F x F x F x P x p             . 

So, in the case of a discrete random variable, the mathematical 

expectation is equal to 

k k

k

E x p  , 

if this series absolutely coincides. 

 

Example 1. A random variable   takes the value 

 

 

 

 

Such a random variable is also called an event indicator. Then the 

mathematical expectation of this random variable is 

0 1E q p p      . 

 

Example 2. The random variable   takes the values 0,1,2,...,n  with 

probabilities 

  , 0, 0, 1k k n k

nP k C p q p q p q        

(Bernoulli distribution, binomial distribution). 

1

0 0 1 1

n n n n
k k n k k k n k k k n k

k k n n n

k k k k

kE x p kC p q kC p q np C p q
n

    

   

         

1 1 ( 1) ( 1)

1 1

( 1)!!

!( )! ( 1)![( 1) ( 1)]!

n n
k n k k n k

k k

nk nnp p q np p q
n k n k k n k

     

 


  

    
   

 

  0 1 

P  q  p  
 

            

    )(xF  

            1 
 

           q 
 

1                  x 
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1
1 1

0

( 1)!
( )

!( 1 )!

n
m n m n

m

n
np p q np p q np

m n m


  




   

 
 . 

Mathematical expectation of a random variable distributed according to 

Bernoulli's law 

E np  . 

Example 3. Let the random variable   be distributed according to the 

Poisson law with the parameter  , i.e. 

 
!

k

P k e
k

   . 

Then 

1

0 1 1 0

.
! ! ( 1)! !

k k k m

k k k m

kE k e e e e e e
k k k m

            
   

    

   

      


     

For a random variable distributed according to the Poisson law with 

parameter  , the mathematical expectation 

E  . 

 

What is the meaning of mathematical expectation for a discrete random 

variable? Let the masses 1 2, ,..., nm m m  be concentrated at the points 

1 2, ,..., nx x x , respectively. 

The center of gravity (mass) of such a system is equal to  

1 1 2 2 1 2
1 2

1 2

...
...

...

n n n
n

n

x m x m x m mm m
x x x

m m m m m m

  
   

  
, 

where 1 2 ... nm m m m    . 

 

    1m     
2m   nm  

             
1x     

2x   nx  
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If the points of the number axis are concentrated masses of ip , then the 

mathematical expectation is the center of mass of such a system. That is, the 

mathematical expectation is a value (some kind of average) around which the 

values of a random variable are grouped. 

 

Using the definition of the Stiltjes integral, we can give a simple 

geometric interpretation of the concept of mathematical expectation: the 

mathematical expectation is equal to the difference of the areas of the figures 

bounded by the ordinate axis, the line 1y   and the curve ( )y F x  on the 

interval (0, ) and between the abscissa axis, curve ( )y F x  and the 

ordinate axis on the interval ( ,0) . Note that the geometric illustration 

allows us to write the mathematical expectation in the following form:  

0

0

( ) (1 ( ))E F x dx F x dx 




     . 

If the random variable   is continuous with the distribution density  

( )f x , then the Stieltjes integral is equal to  

( ) ( )xdF x xf x dx 

 

 

  . 

So, for random variables of absolutely continuous type, the 

mathematical expectation is equal to:  

( )E xf x dx




  . 

 
                      ( )F x  

             1 

      

    
 

 

x  

 + 

  – 
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This is again the center of mass if we consider a rod with density ( )f x . 

 

Example 4. Let the random variable   be uniformly distributed over 

the segment [ , ]a b . That is,  

 
0, [ , ];

1 , [ , ].

x a b

f x
x a b

b a






 


 

 

Then 

2 2 2
1 1( )

2 ( )2 2

b b

aa

x b a a bE xf x dx x dx
b a b a b a






      
    . 

For a random variable uniformly distributed on the segment [a, b], the 

mathematical expectation is 

2

a bE  . 

 

Example 5. Let the random variable be normally distributed with 

parameters ( , )N a  . Let's find E . The distribution density ( )f x  of this 

absolutely continuous random variable is equal to  

2

2

( )

21( )
2

x a

f x e 


 




 . 

Then 
2

2

( )

21( ) ( )
2

x a

E xdF x xf x dx xe dx
 

 

   


  

       

we will replace x a t

  , from which we get x t a  , dx dt  and so on 

2 2 2 2

2 2 2 21 ( )
2 2 2 2

t t t t
a at a e dt te dt e dt e dt a

   

   
   

   

         . 
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Here, the integral of the odd function in the symmetric limits is zero and the 

Poisson integral is 2 . 

So, for a normally distributed random variable with parameters ( , )N a   

E a  . 

 

Example 6. Let the random variable be distributed according to 

Cauchy's law. The density distribution of this absolutely continuous random 

variable is 

2

1 1( )
1

f x
x







  x  . 

Consider 

2 2

0

1 1 2 1| | ( ) | | ( ) | |
1 1

x dF x x f x dx x dx x dx
x x

 
 

   

  

   
      

2
2 2

2 0
0

(1 )1 1 1ln(1 ) lim ln(1 )
1 x

d x
dx x x

x  







      

 . 

This means that a random variable distributed according to the Cauchy law 

does not have a mathematical expectation. 

Definition 2. Variance of a random variable   is the number D , 

which is equal to the mathematical expectation of the square of the deviation 

of the random variable from its mathematical expectation:  

2( )D E E    . 

Variance means dispersion and may be interpreted as a measure of 

dispersion of the values of a random variable around its mathematical 

expectation. 

 

          E    
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Consider two random variables 

It is obvious that 1 0E   and 2 0E  , but the degree of dispersion 

(deviation) of these random variables around 1E  and 2E  is different. 

 

If the random variable is discrete, then it turns out that  

2

2 2 2( )k k k k k k

k k k

D x p E x p x p 
 

     
 

   . 

For a random variable of absolutely continuous type, we have:  

2

2 ( ) ( )D x f x dx xf x dx 
 

 

 
   

 
  . 

Definition 3. The moment of the k-th order of the random variable   

relative to the point x a  is called the number  

( ) ( )k

k a E a    , 1,2,3,...k   

If 0a  , then (0) ( )k

k kE     is called the initial moment of the k-th 

order of the random variable  . 

If a E , then the number ( ) ( )k

k kE E E        is called the 

central moment of the k-th order of the random variable  . 

For the central moment of the k-th order, we can write the following: 

0

( ) ( 1) ( )
k

k i i k i k i

k k

i

E E E C E     



 
    

 
 , 

that is, the central moments are expressed through the initial ones. 

  

 

1  -1 1 

P  0,5 0,5 
 

 

2  -5 5 

P  0,5 0,5 
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§2. Properties of numerical characteristics 

 

p.2.1. Properties of mathematical expectation 

 

1
0
.  If the probability { } 1P C   , then E C   (more narrowly, this 

property is formulated as follows: the mathematical expectation of a 

constant is equal to a constant). 

◄ We can assume that this random variable is discrete: 

here * is an arbitrary number and then 1 0E C C     . ► 

 

2
0
. If the probability { 0} 1P    , then 0E  .  (If   takes non-negative 

values, then the mathematical expectation is non-negative). 

◄ For discrete random variables 0k kx p   when 0kx   and if the 

series coincides. 

For absolutely continuous random variables 

( ) 0xf x dx





  , because ( ) 0f x   at 0x   and ( ) 0f x   at 0x  . ► 

 

3
0
. The mathematical expectation of the sum of random variables is equal to 

the sum of the mathematical expectations of random variables. 

For 1 , 2 , 1E , 2E , 1 2     we have  

1 2 1 2( )E E E E        . 

 

 

  C    

P  1 0 
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In general: the mathematical expectation of the sum of a finite number 

of random variables is equal to the sum of their mathematical expectations 

1 1

n n

i i

i i

E E 
 

 
 

 
  . 

4
0
. If random variables 1  and 2  are independent, 1E  and 2E  exist, then 

the mathematical expectation of the product of random variables is equal 

to the product of mathematical expectations:  

1 2 1 2( )E E E      . 

The importance of the condition of independence of random variables 

1  and 2  demonstrated by the following example. 

Example. Let the random variable 1  be distributed according to the 

law  

and the random variable 
3

2 1  , that is, its distribution law is as follows:  

1 0E   ,  2 0E    1  and 2  are dependent. Consider 
4

1 2 1    : 

Then  4

1 2 1 1 2( ) 16E E E E         . 

 

5
0
. The constant multiplier can be taken as a sign of mathematical 

expectation:  

( )E a a E   . 

 

1  -2 2 

P  0,5 0,5 
 

 

2  -8 8 

P  0,5 0,5 
 

 

1 2   16 

P  1 
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This statement is obvious, since whatever   is, the constant a and the 

quantity   can be considered as independent quantities. 

 

Using 5
0
, let's summarize 3

0
: 

3′
0
. 1 2 1 2( )E a b a E b E        . 

 

6
0
. If the random variables 1  and 2  are such that 1 2  , then 1 2E E  . 

◄ Indeed, 2 1   is a nonnegative random variable. Therefore, according 

to property 2
0
, 2 1( ) 0E    . Using property 3′

0
, we obtain 2 1E E  . 

► 

 

7
0
. It is easy to understand that  

E E  . 

This statement follows from the inequalities       and property 6
0
. 

 

8
0
. Let   be a nonnegative random variable 0  , there is a mathematical 

expectation E  and 0a   a positive real number. Then the probability 

{ }
E

P a
a


   . 

This inequality is called Chebyshev's first inequality or Markov's 

inequality. 

 

9
0
. Let   be a random variable, ( )    be a function of  . Then the 

mathematical expectation 

( ) ( )E x dF x 




  . 



68 

So, in addition to the definition of 
2( )D E E    , according to 

property 9
0
, you can also obtain the formula  

2 2( )D E E    . 

This formula can be obtained in another way (using the properties of 

mathematical expectation): 

 2 2 2( ) 2 ( )D E E E E E              

 
22 2 22 ( )E E E E E E           . 

 

 

p.2.2. Variance properties 

 

1
0
. For any random value   0D  . Moreover, 0D   if and only if there 

exists such a constant C that { } 1P C    (that is, the variance of the 

constant is zero, it is possible to prove the opposite: if 0D  , then   is a 

constant with probability one). 

 

2
0
. 

2( )D a b a D    .  

◄ According to the definition of variance 

 
2

( ) ( )D a b E a b E a b         

 
22( ) ( )E a b a E b E a E            

2 2 2( )a E E a D       .     ► 

 



69 

This property indicates that the variance a b   does not depend on b: 

because the random variable   is shifted by b and the random variable b   

is obtained, and the variance may be interpreted as a measure of dispersion 

relative to the mathematical expectation (corresponding). 

 

Definition 4. The number D     is called the standart 

deviation of the random variable  . 

 

Then you can write a property similar to 2
0
. 

2′
0
. a b a    . 

 

3
0
. The variance of the sum or difference of independent random variables is 

equal to the sum of the variances of the random variables: if  ,   are 

independent, then  

( )D D D      . 

◄ According to the definition of variance 

   
2 2

( ) ( ) ( ) ( )D E E E E E                    

2 2( ) ( ) 2 ( )( )E E E E E E E                

if  ,   are independent, then E   and E   are independent, and 

then, according to property 4
0
 of mathematical expectation, we obtain: 

0 0

2 ( ) ( )D D E E E E D D       
 

         . ► 

 

 

          E                  ( )E b   

      0                
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The variance of the sum of pairwise independent random variables 

(pairwise independence is sufficient and not necessarily independence in the 

aggregate) is equal to the sum of the variances of the random variables. 

Formulated properties 1
0
–3

0
 are an important tool for calculating 

variances of random variables. 

 

4
0
. For any 0  , the probability that the random variable   differs from its 

mathematical expectation by at least   does not exceed the variance of 

the random variable   divided by 2 : 

  2

D
P E


  


   . 

This inequality is called Chebyshov's inequality (the second Cheby-

shov's inequality). 

◄ Consider the random variable 
2( )E  . It is clear that  

2( ) 0E     , 

but also 0  . Therefore, according to the Markov inequality (the first 

Chebyshov inequality), we obtain: 

 2

2

E
P


 


  . 

Hence  

     2 2 2( )P P E P E              , 

but  

2( )E E E D      . 

It follows that  

  2
0

D
P E


  


    . ► 
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Chebyshov's inequality is used when constructing various estimates, 

when proving theorems. In addition, it can be used to roughly estimate the 

probability of deviation of a random variable from its mathematical 

expectation (for any random variable). 

Example 1. Let the random variable be distributed according to the 

binomial law (Bernoulli's law), i.e.:  

  k k n k

nP k C p q   , 0,k n  and 1p q  , 0p  , 0q  . 

E np   has already been calculated. Let's calculate D . 

Let's compare the random variable   with a sequence of independent 

trials. Let there be n such trials. Let us consider random variables i : 

if event  occurred in the -th trial

if event  did not occur in the -t

1,

h tria0, l

,

,
i

A i

A i



 


  1,2,...,i n . 

Random values i  are independent, equally distributed. 

Then for 1,2,...,i n   

0 1iE q p p      , 

 
22 2 2 2 20 1 (1 )i i iD E E q p p p p p p p q               . 

It is easy to understand that the random variable 1 2 n       . 

And now we apply the properties of mathematical expectation and variance 

for the sum of random variables: 

1 2 ... nE E E E np         

and 

1 2 ... n iD D D D nD npq          . 

 

i  0 1 

P  q  p  
 



72 

So, for the binomial distribution (Bernoulli's distribution) 

D npq  ,  npq  . 

Example 2. Let the random variable   be uniformly distributed on 

[ , ]a b . This means that 

 
0, [ , ];

1 , [ , ].

x a b

f x
x a b

b a






 


 

 

In addition, we know that 
2

a bE  . Let's find D . 

 
 

22
3 322 2 1 1

2 3 4

b

a

a ba b b aD E E x dx
b a b a

  
         

     

 
2

2 2 2 2 2 22 2

3 4 12 12

b ab ab a a ab b b ab a          . 

So, when b a  

2( )

12

b a
D


  

2 3

b a


  

for a random variable uniformly distributed on [ , ]a b . 

The uniform distribution is determined by the numbers a and b. On the 

other hand, knowing E  and D , these numbers (a and b) can be found. 

Therefore, the uniform distribution law is completely determined by two 

moments (the first initial and the second central). If, in general, random 

variables are determined by a function or density, then for a uniform 

distribution law, a random variable is determined by two moments. 
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Example 3. Let the random variable   be normally distributed with 

parameters ( ; )N a  , 0  . E a   was found. Let's calculate D . 

 
2

22 2 2 2 2 221( ) ( )
2

x a

D E E x f x dx a x e dx a
  

 

 


 

         

replace variables x a t

  , then x t a  , dx dt   and obtain: 

2

2 2 2 22( 2 )
2

t

t a t a e dt a


 
 






      

2 2 2

 integrand
 function is odd

2 2
2 22 2 2

=0, 2

2

2 2 2

t t t
a at e dt te dt e dt a



 

  

    

  



        

2 2
2 2

2 22 2

2 2 2

t t

dvu

t e dt t e dt 

 

 
 

 

      

2 2
2 2

22 2 (0 2 )
2 2

t t

te e dt   
 

 
 



 
      
 
 

 . 

So, for a normally distributed random variable with parameters ( ; )N a   

2D  ,    . 

That is, the normal law of distribution is completely determined by two 

parameters - mathematical expectation and dispersion. There are such 

random variables that are determined by only one parameter (for example, 

Poisson's distribution is determined by mathematical expectation). 
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p.2.3. Characteristics of the position and form 

of distribution random variable 

 

 

Let   be some random variable with distribution function ( )F x . 

Definition 5. The median of the distribution of the random variable   

is the number ( )Me   such that     1( ) ( )
2

P Me P Me       . Thus, the 

median characterizes the "central value" of a random variable in the sense 

that the probability of accepting a value less than the median and the 

probability of accepting a value greater than the median are equal to each 

other. 

 

 

Definition 6. The mode of distribution of a discrete random variable   

is called its most probable value. 

Let the continuous random variable   have the distribution density 

( )f x . 

  

               
     )(xf  

    

 

 

 

 

  

)(Me           x  
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Definition 7. Each real value of x at which the distribution density 

reaches a maximum is called the mode of the distribution of a continuous 

random variable  . 

It is customary to denote the mode of distribution of a random variable 

  by ( )Mo  . A distribution with a single mode is called unimodal (for 

example, a normal distribution), in the opposite case – polymodal (for 

example, a uniform distribution on a segment). 

Using the definitions of the initial and central moments, as well as the 

mathematical expectation and variance and their properties, it is easy to 

obtain that the initial moment of the first order 

1 E  , 

the central moment of the second order 

2 D  , 

and also to express the central points through in 

0 1  , 

1 0  , 

2

2 2 1    , 

3 3 2 2 3

3 1 1 1 1( ) ( 3 3 )E E               

ip   

                    

 

 

 

     

           0              )(Mo                 x  
 

 
               
     )(xf  

    

 

 
 

 

  

    )(Mo        x  
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2 3 3

3 2 1 1 1 1 3 2 1 13 3 3 2                , 

4 2 3 4 2 4

4 1 4 3 1 2 1 1 1 1 4 3 1 2 1 1( ) 4 6 4 4 6 3E                           . 

Moments of higher orders are used for a more detailed description of 

the distributions. 

The third central moment serves to characterize the asymmetry (or 

"skewness") of the distribution. If the distribution is symmetrical with respect 

to the mathematical expectation (or, in a mechanical interpretation, the mass 

is distributed symmetrically with respect to the center of gravity), then all 

central moments of odd order (if they exist) are equal to zero. 

Therefore, it is natural to choose one of the odd moments as a 

characteristic of distribution asymmetry. The simplest of them is the third 

central point. It has the dimension of a cube of a random variable; to obtain a 

dimensionless characteristic, the third moment of 3  is divided by the cube 

of the root mean square deviation. 

Definition 8. The coefficient of asymmetry, or simply the asymmetry of 

the random variable  , is the number As (if it exists), which is equal to 

3

3
As




 . 

The figure shows two asymmetric distributions – one with positive and 

the other with negative asymmetry. 

       )(xf  

       0As         0As  

 

 
 

 

  

           1E  2E             x  
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The fourth central moment serves to characterize the so-called 

"steepness", i.e., the sharp top of the distribution. 

Definition 9. The excess of a random variable   is the number Ex  (if it 

exists), which is equal to 

4

4
3Ex




  . 

The number 3 is subtracted from the share of 4

4




 because for a normal 

distribution, as it is easy to establish, 4

4
3




 . 

 

Thus, for a normally distributed random variable, the kurtosis is zero. If 

the probability distribution of the random variable   is unimodal and the 

density of the distribution ( )f x  has a sharper peak than the density of the 

distribution of a normal random variable with the same variance, then the 

random variable    has positive kurtosis ( 0Ex  ), if ( )f x  is less sharp and 

is more smoothed compared to the density of the corresponding normal 

distribution, then 0Ex  . 

 

  

     )(xf  

          0Ex  

      0Ex  

         0Ex  

 

 

                         x  
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p.2.4. Correlation of two random variables 
 

Let two random variables   and   be given, for which there are 

mathematical expectations and variances E , D , E , D  and 0D  , 

0D  . 

Definition 1. The random variable E     is called the centered 

random variable for  . 

It is characterized by the fact that its mathematical expectation 0E  . 

Similarly, you can enter a centered random variable for  : E     and, 

accordingly, 0E  . 

If   and E  are known, then you can go to   and vice versa. 

Definition 2. The random variable 
D 

 



   is called a 

standardized (standard) random variable. 

It is characterized by the fact that 0E  . 

Let's find the variance of a standardized random variable 

 
2

2 2 E
D E E E E



 
   



 
      

 

 

 
2

2

2 2 2

1 1
D

E E


  


 

  
     , 

i.e. 1D   – the variance of the standardized random variable is equal to one. 
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Similarly, you can enter 






  and, accordingly, 0E  , 1D  . 

You can always go from any random variables to those in which the 

mathematical expectation is zero and the variance is one. 

Definition 3. The covariance of the random variables   and   is called 

the mathematical expectation of the product of the corresponding centered 

random variables   : 

 cov( ) ( ) ( ), E E E E       
 

      
 

. 

If   and   are independent, then   and   are also independent, which 

means that 0E E E   
 
    

 
, that is, cov( , ) 0ξ    for independent 

random variables. Therefore, covariance can be regarded as a measure 

(characteristic) of the dependence of two random variables. 

Definition 4. Covariance of standardized random variables is called 

the correlation coefficient of two random variables   and  : 

   cov , ,     . 

That is, the correlation coefficient  

      ( , )
E E

E E E E E
σ σ 

   
        

  
          

 

 

 1 1( ) ( ) cov( , )E E E
σ σ σ σ   

          
 

. 

How does the correlation coefficient characterize the dependence 

between random variables? 
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1. If   and   are independent, then ( , ) 0.     The converse statement 

is, generally speaking, false (if ( , ) 0,     then   and   are not necessarily 

independent). 

2. The correlation coefficient for any random variables   and   does 

not exceed one by absolute value: ( , ) 1    . 

3. ( , ) 1     if and only if there are real numbers A and B such that 

A B    (that is, when the relationship between the random variables is 

linear. Such a relationship, linear, will later turn out to be the closest 

relationship between the random variables values). More generally, this 

characteristic is formulated as follows: ( , ) 1     if and only if there exist 

such real numbers A and B that { } 1P A B    . 

 

If ( , ) 0    , then the relationship between   and   is called direct 

(as   increases,   increases and vice versa). If ( , ) 0    , it is called 

inverse (in the sense that as   increases, the random variable   decreases and 

vice versa). 

 

Example 1. For a random variable 3 4    coefficient correlation 

( , ) 1    , because the relationship is linear. 

Example 2. If 27 17    , then ( , ) 1     . 
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EXERCISES 

 

Topic 1. "Elements of Combinatorics" 

 

1. There are n roads leading from city A to city B, and m roads from city B 

to city C. How many ways can you travel along the route A–B–C? 

2. 7 roads lead to the top of the mountain. How many ways can a tourist go 

up and down the mountain? And if the ascent and descent are carried out 

in different ways? 

3. 16 teams are participating in the draw of the national football 

championship. In how many ways can gold, silver and bronze awards be 

distributed? 

4. How many three-digit numbers can be written using the digits 0, 1, 2, 3, 

4? 

5. How many three-digit numbers can be written using the digits 0, 1, 2, 3, 

4, if each digit is used no more than once? 

6. How many five-digit numbers are there that are multiples of 5? 

7. 10 subjects are studied in the class. There are 6 lessons on Monday, and 

all lessons are different. How many ways can you make a schedule for 

Monday? 

8. n points are chosen on one side of the triangle, m points on the other. 

Each vertex at the base of the triangle is connected by straight lines to 

points chosen on the opposite side. How many parts will the triangle be 

divided into by straight lines? 

9. n chess players participate in the tournament. How many games will be 

played in a chess tournament if every two players play each other once? 
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10. How many diagonals can be drawn in a convex polygon with n sides? 

11. n straight lines are drawn on the plane, and no two of them are parallel 

and no three intersect at the same point. How many points of intersection 

are formed in this case? 

12. If you turn a sheet of paper 180˚, the numbers 0, 1, 8 do not change, 6 

and 9 merge into one another, and the other numbers lose their meaning. 

How many seven-digit numbers are there whose value does not change 

when a sheet of paper is turned 180˚? 

13. In how many ways can a commission consisting of four people be 

chosen from nine people? 

14. At how many points do the diagonals of a convex n-gon intersect, if 

every three of them do not intersect at one point? 

15. There are n light bulbs in the room. How many different ways of lighting 

a room are there? 

16. In how many ways can four students be seated in 25 seats? 

17. In how many ways can n guests be placed at a round table? 

18. How many different words can be formed by rearranging the letters in 

the word "mathematics"? 
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Topic 2. "The space of elementary events. Operations on events" 

 

19. A coin is tossed twice. Describe the space of elementary events. 

Describe the following events:  

А – at least once the coat of arms will fall out;  

B – the coat of arms will fall out on the second toss. 

20. The dice are thrown twice. Describe the space of elementary events. 

Describe the events  

A – the sum of points scored is equal to 8;  

B – at most, a 6 will fall out once. 

21. A coin is tossed, and then a dice is tossed. Describe the space of 

elementary events. 

22. Construct a set of elementary events in such an experiment: a coin is 

tossed and a coat of arms is recorded; tossing continues until the coat of 

arms falls twice. 

23. Let the experiment consist in measuring two values that take values 

from the segment [0,1] . Describe the space of elementary events. 

24. A and B are subsets of the plane 2  , moreover 

{( , ) : 10}A x y x y   , {( , ) : 2 5}B x y y x   . 

Describe sets A B , A B , \A B , A , B , A B . 

25. Two points are chosen at random on the segment [ , ]a b . Let x and y be 

the coordinates of these points. Draw on the plane Oxy  the regions 

corresponding to the events  , A , B , A B , \A B , A B , where the 

event A is that the second point is closer to the left end of the segment 

than the first to the right, and B – is the distance between the points less 

than half the length of the segment. 

26. From the numbers 1, 2, 3, 4, 5, first choose one, and then choose the 

second from the four remaining numbers. Describe the space of 

elementary events. Describe the events  
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A – an odd number is chosen first;  

B – the second chosen odd number;  

C – an odd number was chosen both times. 

27. The coin is tossed until it lands on one side twice in a row. Describe the 

space of elementary events. Describe the events  

A – the experiment will end before the sixth toss;  

B – an even number of tosses will be made.  

28. Three players a, b, c hold a chess tournament according to the 

following scheme: in the first round a and b play, player c is free, in the 

second round the winner of the first round and player c play, and the 

player who lost in the first round is free, in the winner of the second 

round and the player who rested in the second round play in the third 

round, and the winner of the second round is free. The tournament 

continues until one of the players wins two games in a row (he is 

declared the winner of the tournament). There are none. Describe the 

space of elementary events. Describe the events  

A – the winner of the tournament will be player a;  

B – the winner of the tournament will be player b;  

C - the winner of the tournament will be player c. 

29. Two different balls are placed in two boxes. Describe the space of 

elementary events. Describe the event – there is an empty box. 

30. Two identical balls are placed in two boxes. Describe the space of 

elementary events. Describe the event – there is an empty box. 

31. Three shots were fired at the target. Let iA  be the event, which consists 

in the fact that at the i-th shot there is a hit ( 1, 2, 3i  ). Express the 

following events in terms of iA  events:  

A – there are three hits;  

B – there was no hit;  

C – only one hit;  

D – at least two hits. 
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Topic 3. "Classical definition of probability" 

 

32. A coin is tossed twice. Calculate the probabilities of events 

А – at least once the coat of arms will fall out;  

B – the coat of arms will fall out on the second toss. 

33. The dice are thrown twice. Calculate the probabilities of events 

A – the sum of points scored is equal to 8;  

B – at most, a 6 will fall out once. 

34. Two different balls are placed in two boxes. Find the probability that 

there is an empty box. And if the balls are the same? 

35. There are a white and b black balls in the box. One ball is taken out of 

the box. She turned out to be white. This ball is put aside. After that, 

another ball is taken from the box. Find the probability that this ball is 

also white. 

36. There are a white and b black balls in the box ( 2a  ). Two balls are 

taken out of the box at once. Find the probability that both balls are 

white. 

37. The dice are thrown twice. Find the probability that the same number of 

points will appear both times. 

38. Three players are playing cards. Each of them was dealt 10 cards and 

two are put aside in a “buy-in”. One of the players sees that he has 6 

diamond cards and 4 non-diamond cards in his hands. He discards two 

cards from these four and takes two from a “buy-in”. Find the 

probability that he buys two diamond cards. 

39. From a box containing n renumbered balls, all balls are taken out at 

random one by one. Find the probability that the numbers of the drawn 

balls will be in order. 

40. What is the probability that a child who does not know how to read will 

form the word "sport" from the letters o, p, r, s, t of the split alphabet? 
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41. What is the probability that the word "pineapple" will be formed from 

the letters a, e, e, i, l, n, p, p, p? 

42. What is the probability that the word "statistics" will be formed from 

the letters a, c, i, i, s, s, s, t, t, t ? 

43. Find the probability that among n numbers selected at random 

a) there is no number 5; 

b) there is no number 2; 

c) there are no numbers 5 and 2; 

d) there is no number 5 or no number 2. 

44. A dice is thrown 6 times. Calculate the probability that all six heads 

will fall out. 

45. There are 5 passengers in the elevator; the elevator stops on the 9th 

floor. What is the probability that all passengers exit the elevator on 

different floors? 

46. Calculate the probability that the birthdays of 12 people will be in 

different months of the year. 

47. Calculate the probability that for the given thirty people out of 12 

months of the year, 6 months have two birthdays and 6 have three 

birthdays. 

48. There are five segments whose lengths are 1, 3, 5, 7, and 9 units, 

respectively. Determine the probability that a triangle can be 

constructed from the three selected segments. 

49. 16 teams participate in the hockey tournament, from which two groups 

of 8 teams are randomly formed. There are 5 extra-class teams among 

the participants of the tournament. Find the probabilities of events 

A – all extra-class teams will be in the same group; 

B – two extra-class teams will fall into one of the groups, and three – 

into another. 

50. A full deck of cards (52 cards) is randomly divided into two equal parts 

of 26 cards. Find the probabilities of events 
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A – two aces will appear in each of the parts; 

B – in one of the parts there will be no aces, and in the other – all four; 

C – in one of the parts there will be one ace, and in the other – three. 

51. There are M defective parts in a batch consisting of N parts. n parts 

were chosen at random ( )n N . What is the probability that among 

them m defective ( )m M ? 

52. A coin is tossed until it lands on one side twice in a row. Describe the 

space of elementary events. Find the probabilities of events  

A – the experiment will end before the sixth toss;  

B – an even number of tosses will be made, and the probability that the 

experiment will continue indefinitely. 

53. Three players a, b, c hold a chess tournament according to the 

following scheme: in the first round a and b play, player c is free, in the 

second round the winner of the first round and player c play, and the 

player who lost in the first round is free, in the winner of the second 

round and the player who rested in the second round play in the third 

round, and the winner of the second round is free. The tournament 

continues until one of the players wins two games in a row (he is 

declared the winner of the tournament). There are none. Describe the 

space of elementary events.  

A – the winner of the tournament will be player a;  

B – the winner of the tournament will be player b;  

C – the winner of the tournament will be player c; 

N – the winner will not be revealed until the n-th round; 

D – the tournament will never end. 

54. There are n pairs of shoes. From them, 2r shoes are randomly selected  

(2r n ). What is the probability that among the selected shoes 

a) there are no pairs; 

b) there is exactly one complete pair; 

c) are there exactly two complete pairs? 
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Topic 4. "Geometric probability" 

 

 

55. In a circle of radius R a dot is thrown at random. What is the probability 

that the distance from this point to the center of the circle does not 

exceed r? 

56. Two ships must approach the same berth. The appearance of ships are 

independent events that are equally possible during the day. Find the 

probability that one of the ships will have to wait for the release of the 

berth, if the first ship's parking time is one hour, and the second one is 

two hours. 

57. Parallel straight lines are drawn on the plane, the distance between 

which is equal to 2a. A circle of radius ( )r r a  is thrown at random 

on the plane. What is the probability that the circle does not cross any 

of the lines? 

58. What is the probability that the sum of two randomly taken positive 

numbers, each of which does not exceed one, does not exceed one, and 

their product does not exceed 2

9
? 

59. Parallel straight lines are drawn on the plane, the distance between 

which is equal to 2a. A needle with a length of 2 ( )l l a  is randomly 

thrown onto this plane. What is the probability that the needle will cross 

one of the lines? (Buffon's problem, 1777) 

60. A random point ( , )M    is chosen at random in a square with vertices  

(0; 0), (0; 1), (1; 1), (0; 1). Find the probability that the roots of the 

equation 
2 0x x     are real. 

61. A rod of length l was broken into three parts, choosing the place of the 

break at random. Find the probability that a triangle can be formed from 

the three parts obtained. 
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62. A point is randomly thrown into a circle of radius R. Find the 

probability that it will be outside the square inscribed in this circle. 

63. Two real numbers x and y are chosen at random so that | | 3x  , | | 5y  . 

What is the probability that the fraction x

y
 is positive 

64. Two real numbers x and y are chosen at random so that | | 1x  , | | 1y  . 

What is the probability that | | | |x y ? 

65. Two real numbers x and y are chosen at random so that | | 1x  , 0 1y  . 

What is the probability that 
2x y ? 

66. A point is randomly thrown into a square with vertices (0,0), (0,1), (1,0), 

(1,1). Let ( , )   be its coordinates. Find the probability  | |P z    

for 0 1z  . 

67. A point is randomly thrown into a square with vertices (0,0), (0,1), (1,0), 

(1,1). Let ( , )   be its coordinates. Find the probability 

 min( , )P z    for 0 1z  . 

68. A point is randomly thrown into a square with vertices (0,0), (0,1), (1,0), 

(1,1). Let ( , )   be its coordinates. Find the probability 

 max( , )P z    for 0 1z  . 
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Topic 5. "Basic theorems of probability theory" 
 

 

69. There are a white and b red balls in the box. Two balls are taken out of 

the box. What is the probability that these balls   a) different colors;   b) 

both white? 

70. A coin is tossed twice. Describe the following events: A – the coat of 

arms fell out on the first toss;  B – the coat of arms fell out on the 

second toss. Calculate probabilities ( )P B , ( )P A B , ( | )P B A . 

71. A coin is tossed three times. Describe the following events: A – coat of 

arms fell out twice; B – at least one coat of arms fell out. Calculate 

probabilities ( )P A , ( )P B , ( )P A B , ( / )P A B . 

72. The student came to the exam knowing the answers to only 20 of the 25 

questions in the program. The examiner asked the student 3 questions. 

Find the probability that the student knows the answers to all these 

questions. 

73. Two dice are thrown. What is the probability that there will be at most 

one six if the sum of the points is known to be eight? 

74. Throw three dice. What is the probability that at least one of them will 

get one point, if all three dice have different faces? 

75. There are 12 red, 8 green and 10 blue balls in a box. Two balls are 

drawn at random. What is the probability that balls of different colors 

were drawn, if it is known that no blue ball was drawn? 

76. Let the probability of sinking a ship for one torpedo equal to 0.3. What 

is the probability that four torpedoes will sink a ship if one torpedo hit 

is enough to sink it? 

77. Six dice are thrown. Find the probability that all six heads will fall. 

78. The wardrobe gave out numbers to four people who handed in their hats 

to the wardrobe at the same time. After that, she mixed up all the hats 



91 

and hung them up at random. Find the probabilities of the following 

events: A – the wardrobe will give each of the four people his own hat; 

B – exactly three people will receive their hats; C – exactly two people 

will receive their hats; D – exactly one person will receive his hat; E – 

none of the persons will receive their hat. 

79. There are 9 new tennis balls in the box. Three balls are taken for the 

game, after the game they are put back in the box. Balls that have been 

played with and those that have not been played with are no different. 

What is the probability that after three games there are no unplayed 

balls (new balls) left in the box? 

80. Two coins are tossed. Events are considered A – falling coat of arms on 

the first coin; B – falling coat of arms on the second coin. Find the 

probability of an event C A B . 

81. Four cards are taken out of a deck of cards (36 sheets). Events under 

review A – there will be at least one diamond among these cards; B – 

there will be at least one king among these cards. Find the probability 

of the event C A B . 

82. Rockets are fired at the target. The probability of each missile hitting 

the target is p. Hitting individual missiles are independent events. Each 

missile that hits the target destroys it with probability 1p . Shoot until 

the target is destroyed or until all the rocket ammunition is used. There 

are n rockets. What is the probability that a) not all ammunition will be 

used; b) after destroying the target, at least two missiles will remain; c) 

will no more than two rockets be used? 

 

  



92 

 

Topic 6. "Formulas of Total Probability, Bayes" 

 

83. There are 5 rifles in the shooting range, each of which has a probability 

of hitting the target equal to 0.5; 0.6; 0.7; 0.8 and 0.9. Determine the 

probability of hitting the target with one shot if the rifle is selected at 

random. 

84. There are two batches of products of 12 and 10 pieces, and in each 

batch one product is defective. The product taken at random from the 

first batch is transferred to the second. After that, one product is 

selected from the second batch. Determine the probability of choosing a 

defective product from the second batch. 

85. The traveler leaves point O and at each 

intersection chooses one of the paths at 

random. What is the probability that the 

traveler will get to point A? 

86. There are three identical boxes. In the first a white and b black balls; in 

the second c – white and d black balls; in the third – only white balls. 

One box is chosen at random and one ball is taken out of it. What is the 

probability that this ball is white? 

87. Two dice are taken from a complete set of dominoes. Determine the 

probability that the second can be attached to the first. 

88. In the first box there are 10 balls, 8 of them are white; in the second box 

there are 20 balls, of which 4 are white. One ball was taken at random 

from each box, and then one ball was chosen at random from these 

balls. Find the probability that a white ball is chosen. 

89. There are 15 tennis balls in a box, 9 of them are new. For the first game, 

three balls are taken at random, which are returned to the box after the 

game. For the second game, three balls are also taken at random. Find 

the probability that all the balls taken for the second game are new. 

 

О 

А 
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90. Two machines produce the same parts, which are placed on a common 

conveyor. The productivity of the first machine is twice the productivity 

of the second machine. The first machine makes 60% of parts of 

excellent quality, and the second – 84%. A part was taken from the 

conveyor, which turned out to be of excellent quality. Find the 

probability that this part was made by the first machine. 

91. There is one ball (white or black) in the box. A white ball is thrown into 

the box. Then a ball is taken out at random from the box. She turned out 

to be white. What is the probability that there is a white ball left in the 

box? (Gartner's task). 

92. In a group of 10 students who came for an exam, three students are 

excellently prepared, four are well prepared, two are mediocre and one 

is poorly prepared. There are 20 questions in the exam tickets. An 

excellently prepared student can answer all 20 questions, a well-

prepared student can answer 16 questions, an average student can 

answer 10 questions, and a poorly prepared student can answer  

5 questions. A student called at random answered three arbitrarily asked 

questions. Find the probability that this student is prepared    

a) excellent;   b) bad. 

93. One lord, fed up with his seer with his false predictions, decided to 

execute him. But being a good lord, he decided to give the seer one last 

chance. He was ordered to divide four balls into two boxes: two black 

and two white (without leaving an empty box). The executioner will 

choose one of the boxes at random and take one bullet from it. If this 

ball is black, then the seer will be executed, if it is white, then his life 

will be saved. How should the seer place the balls in the boxes to ensure 

he has the greatest chance of being saved? (Joke task). 

94. There are two boxes: in the first a white and b black balls; in the second 

c – white and d black balls. A box is chosen at random and one ball is 

taken out of it. She turned out to be white. Find the probability that the 

next ball drawn from the same box will also be white. 
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Topic 7. "Scheme of independent tests: 

Bernoulli's formula, the most probable number" 

 

 

Indication 1. If n independent trials are conducted under the same 

conditions, and each trial can have k consequences 1A , 2A ,..., kA  (mutually 

exclusive) with probabilities 1p , 2p ,..., kp , 

1

1

k

j

j

p



 , then the probability 

that event 1A  will appear in 1m  test, event 2A  in 2m  tests, etc., event kA  in km  

1

k

i

i

m n



 
  

 
  is expressed by the formula 
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
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Instructions 2. If n independent tests are conducted under the same 

conditions, in the first of which the probability of success is 1p , in the second 

– 2p , etc., in the n-th – np , then the probability that success will occur k 

times is equal to the coefficient at kz  of the function  

1 1 2 2

1

( ) ( ) ( )( )...( )

n

n i i n n

i

z p z q p z q p z q p z q


      , 

which is called the generating function of the probability. The sum of all 

coefficients of the generating probability function is equal to one. 

95. What is more likely to win against an equal opponent: a) three parties 

out of four, or five out of eight; b) at least three batches out of four, or 

at least five batches out of eight; 
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96. Firing at the target with three projectiles is conducted. Projectiles hit the 

target independently of each other. For each projectile, the probability 

of hitting the target is 0,4. If one projectile hits the target, it hits it 

(disables it) with a probability of  0,3; if two shells - with a probability 

of 0,7; if three shells – with a probability of 0,9. Find the total 

probability of the target being impressed. 

97. The battery fired 14 shots at the target, the probability of hitting which 

is equal to 0,2. Find the most probability number of hits and the 

probability of this number of hits. 

98. The probability of hitting the target with each shot from the cannon is 

0,8. How many shots must be fired so that the most probability number 

of hits is 20? 

99. The probability of at least one occurrence of an event in four 

independent trials is 0,59. What is the probability of an event occurring 

in one trial if the probability is the same in each trial? 

100. Event C will occur if event B occurs at least three times. Determine the 

probability of occurrence of event C, if the probability of occurrence of 

event B in one trial is equal to 0,3 and  

a) 5 independent trials are conducted;  

b) 7 independent tests. 

101. One mathematician, who smokes, carries two boxes of matches with 

him. Every time he wants to get a match, he chooses one of the boxes at 

random. Find the probability that when a mathematician chooses an 

empty box for the first time, there will be r matches in another box  

( 0,1, 2,...,r n , where n is the number of matches that were in each 

box initially). (Banach's problem). 

102. A person belonging to a certain population group is a brunette with a 

probability of 0,2, a brown-haired person with a probability of 0,3, a 
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blond with a probability of 0,4, and a redhead with a probability of 0,1. 

A group of six people is chosen at random. Find the probabilities of the 

following events:  

A – there are at least four blondes in the group;  

B – there is at least one redhead in the group;  

C – the group has the same number of blondes and brown-haired 

people. 

103. What is the probability of hitting the target at least twice, if the 

probability of hitting is 0,2 and 10 independent shots are fired? Find the 

probability, at most, of two hits, given that one hit has occurred. 

104. In a match for the world chess championship, the game goes to six 

victories of one of the participants (draws are not taken into account, a 

win – 1 point, a loss or a draw – 0 points). Assuming that the 

participants in the match are equal in strength, find the probability that 

at the end of the match the loser will score k points ( 0,1, 2,..., 5k  ). 

105. Four independent shots are fired at some target. The probability of 

hitting with different shots is equal to 1 0,1p  ; 2 0,2p  ; 3 0,3p  ; 

4 0,4p  . Find the probabilities 4 (1)P , 4 (2)P , 4(3)P , 4 (4)P , 4 (0)P , 

4( 1)P  , 4 ( 2)P  . 

106. The factory manufactures products, each of which passes four types of 

tests. The product passes the first test with a probability of 0,9; the 

second – 0,95; the third – 0,8; the fourth – 0,85. Find the probability 

that the product will be successful  

a) all four tests;  

b) two tests;  

c) at least two tests. 
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Topic 8. "Scheme of independent tests:  

Laplace and Poisson formulas" 
 

 

107. The probability that the mileage of the car without repair will be at least 

20000 km is equal to 0,75. There are 550 cars in the garage. Determine 

the probability that such machines will turn out to be:    

a) 400;  

b) not less than 400. 

108. The probability that the buyer needs shoes of the 41st size is 0,2. Find 

the probability that among 100 buyers need shoes of size 41:  

a) 25 persons;  

b) from 10 to 30 buyers;  

c) no more than 30 buyers;  

d) not less than 35 people. 

109. The probability of a positive result in each of the experiments is equal 

to 0,9. How many experiments should be conducted so that with a 

probability of 0.98 it can be expected that at least 150 experiments will 

give a positive result? 

110. The technical control department checks 900 parts for standardization. 

The probability that the part is standard is 0,9. Find with a probability 

of 0,9544 the boundaries that contain the number of m standard parts 

among the tested. 

111. On average, 85% of first grade products come off the conveyor. How 

many products should be taken so that with a probability of 0,997 the 

deviation of the frequency of products of the first grade in them from 

0,85 in absolute value does not exceed 0,01? 



98 

112. There are 500 students at the faculty. What is the probability that 

September 1 is the birthday of k students of this faculty at the same 

time? Calculate the specified probability for the values 0,1, 2, 3k  . 

113. The plant sent 5000 good-quality products to the base. The probability 

of damage to each product in transit is 0,0002. What is the probability 

that among 5000 products in transit:  

a) exactly three products will be damaged;  

b) exactly one product;  

c) no more than three products;  

d) more than three products? 

114. The collection on the theory of probabilities was printed in a circulation 

of 100000 copies. The probability of incorrect brochures is 0,0001. Find 

the probability that the circulation has:  

a) exactly 5 defective books;  

b) not less than 5 and not more than 8 defective books;  

c) more than three defective books? 

115. The device consists of three independently working elements. The 

probabilities of failure-free operation of the elements are equal to 

1 0,7p  , 
2 0,8p  , 

3 0,9p  . Find the probability that during time T  

a) all elements will work flawlessly;  

b) two elements will work without fail;  

c) one element will work without fail;  

d) none of the elements will work flawlessly. 

116. A gun is fired at a moving target. At the first shot, the probability of 

hitting is 
1 0,8p  . With each subsequent one, the probability decreases 

by a factor of two. Four shots were fired. Determine the probability that 

there was at least one hit. 
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Topic 9. "Random variables: 

the distribution law of the random variable, 

the distribution function of the random variable " 
 

 

117. There are 5 white and 25 black balls in a box. One ball is taken out. The 

random variable   is the number of white balls that were taken out of 

the box. Construct the distribution series and the distribution function 

( )F x  of the random variable  . 

118. Three coins are tossed. It is necessary: a) to set a random value  , 

which is equal to the number of "digits" that will fall out; b) construct 

the distribution series and the distribution function ( )F x  of the value  

 , if the probability of the “coat of arms” falling is 0.5. 

119. Two shooters shoot one shot at one target. The probability of hitting for 

the first shooter with one shot is 0.5, for the second - 0.4. The random 

variable k is the number of hits on the target. Find the distribution law 

and the distribution function   and calculate the probabilities of events 

{ 2}  , { 1}  , {1 2}  . 

120. Successive reliability tests of five devices are carried out. Each 

subsequent device is tested only if the previous one was reliable. 

Construct a series of the distribution of the random variable   – the 

number of tested devices, if the probability of passing the test for each 

of them is 0.9. 

121. There are 7 balls in the box, 4 of which are white. 3 balls are taken out 

at random from the box. Write down the law of distribution of the 

number of white balls among the chosen ones. 
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122. Out of 25 graduate students, only 5 defended with "excellence".  

3 theses were chosen at random. Find the law of distribution of the 

random variable   – the number of works rated "excellent" among the 

selected. Calculate the probability of the event { 0}  . 

123. A worker maintains 4 machines that work independently. The 

probability that the machine will not require worker service within an 

hour is equal to 0.7 for the first machine, 0.75 for the second, 0.8 for the 

third, and 0.9 for the fourth. Construct a law for the distribution of a 

random number of machines that will not require the maintenance of a 

worker. 

124. The subscriber forgot the last digit of the phone number, but remembers 

that it is even. Construct a series (law) and the distribution function of 

the random variable   – the number of telephone number dials made by 

him, if he dials the last digit at random, and does not dial the dialed 

digit in the future.  

125. A dice is thrown n times. Find the distribution function of the number 

of sixes. 

126. The probability that the clock needs additional adjustment is 0.2. Draw 

up a law for the distribution of the number of watches that need 

additional adjustment among three randomly selected ones. Construct a 

distribution function. 

 

  



101 

 

Topic 10. "Continuous random variables: 

distribution laws, distribution function and density" 
 

 
127. The random variable is given by the distribution function 

2

0, 2,

( ) ( 2) , 2 3,

1, 3.

x

F x x x

x






   
 

 

Find: 

a) distribution density ( )f x ;  

b) the probability of the value   falling into the interval (1; 2,5) ; 

c) the probability of the value   falling into the interval (2,5; 3,5) . 

128. (Cauchy distribution). The distribution function of the random variable 

  is given by the formula ( ) arctgF x A B x    ( )x   . Find: 

a) constants A and B; 

b) distribution density ( )f x ; 

c) the probability that the value   will fall on the segment [ 1; 1] . 

129. The random variable   is distributed according to the "right triangle 

law" on the interval [0; ]a .  

a) Write down the expression for the distribution 

density ( )f x .  

b) Find the distribution function ( )F x .  

c) Find the probability of a random hit values of   

on the section from 
2

a  to a . 

          )(xf             

    b     
             

                 

      

                             

    
     a      x  
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130. The distribution curve of the random variable   is the upper arc of an 

ellipse with semi-axes a and b. The quantity a is known. Determine the 

value of b and construct the distribution function ( )F x . 

131. The random variable   has the distribution density 
2

( )
1

Af x
x

 


 

(Cauchy's law). Find the coefficient A and the distribution function 

( )F x . 

132. The random variable   is given by the distribution function 

1 1( ) arctg
2 2

xF x


    ( )x   . Find a possible value of 1x  that 

satisfies the condition: with a probability of 0,25, the random variable 

  as a result of the tests will acquire a value greater than 1x . 

133. The density of the distribution of the random variable   is given by the 

formula  

0, 1,

( ) 0,5 , 1 2,

0, 2.

x

f x x x

x






   
 

 

Construct the distribution function ( )F x  and its graph. 

134. The random variable   has the distribution density  

0, 0,

( ) 0,5sin , 0 ,

0, .

x

f x x x

x

 






  
 

 

a) Construct the distribution function ( )F x . 

b) Find the probability that, as a result of the test, the value   will take 

a value from the interval 0;
4

 
 
 

. 

 



103 

135. The density of the distribution of the random variable   is given as 

follows: 
23 , 0 1,

( )
0, 0, 1.

x x
f x

x x


  
 

 
 

a) Draw a graph of the distribution function ( )F x . 

b) Find the median and mode of the value  . 

136. The density of the distribution of the random variable   is given as 

follows:  

, 0 2,
( )

0, 0, 2.

ax x
f x

x x


 
 

 
 

a) Find the coefficient a and the distribution function ( )F x . 

b) Find the probability 4 0,5
3

P 
 

  
 

. 

137. A continuous random variable has a distribution function:  

2

0, 0,

( ) , 0 1,

1, 1.

x

F x ax x

x






  
 

 

Find the coefficient a, ( )f x ,  0,25 0,5P    . Draw the graphs of 

( )F x  and ( )f x . 

138. The random variable   obeys Simpson's law ("the law of the isosceles 

triangle") on the segment [ ; ]a a . 

a) Write an expression for the distribution 

density ( )f x . 

b) Draw the graph of the distribution function 

( )F x . 

c) Find the probability of a random value   falling into the interval 

;
2

a a  
 

. 

 

                       )(xf  

                              b  
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Topic 11. "Numerical characteristics  

of discrete random variables" 
 

139. Find the mathematical expectation and variance of the 
AI  indicator of 

event A, the probability of which is p. 

140. Find the mathematical expectation and standard deviation of a random 

variable given by such a distribution law 

141. Three independent shots are fired at the target, the probability of hitting 

with each shot is 0,4. The random variable   is the number of hits. 

Determine the mathematical expectation, variance, standard deviation 

and asymmetry of a random variable  . 

142. There are 3 non-standard parts in a batch of 10 parts. Two details are 

selected at random. Find the mathematical expectation of a discrete 

random variable   – the number of non-standard parts among the 

selected, the variance D  and the standard deviation  . 

143. The mathematical expectation and the variance of the random variable 

  are equal to 2 and 10, respectively. Find the mathematical 

expectation and the variance of the random variable 2 5  . 

144. The discrete random variable   takes three possible values: 
1 4   with 

a probability 
1 0,5p  ; 

2 6   with probability 
2 0,3p   and 

3  with 

probability 
3p . Find the value of 

3  and probability 
3p  if the 

mathematical expectation 8E  . 

145. Throw n dice. The random variable   is the sum of the points that will 

fall on all the dice. Determine the mathematical expectation E , the 

variance D  and the standard deviation  .  

 

  3 5 7 9 

P 0,4 0,3 0,2 0,1 
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146. Prove that the mathematical expectation of deviation E   is zero. 

147. The discrete random variable   has only two possible values 
1x  and 

2x , 

and 
2 1x x . The probability that   takes the value 

1x  is 0,6. Find the 

distribution law of the quantity   if 1,4E   and 0,24D  . 

148. Prove that the mathematical expectation of a discrete random variable 

lies between its smallest and largest possible values. 

149. Two shooters shoot two shots at the target independently of each other. 

The probability of hitting with each shot for the first shooter is 0,3, and 

for the second – 0,4. Draw up the law of distribution of the total number 

of hits on the target, find the mathematical expectation and variance of 

this random variable. 

150. The sniper starts shooting at the target before the first hit, having four 

cartridges. The probability of hitting the target with the first shot is 0,8, 

and with each subsequent shot it is halved. Draw up the law of 

distribution of the number of fired shots and find the mathematical 

expectation of this random variable. 

151. There are 8 standard parts in a batch of ten parts. Two parts are 

randomly selected at the same time. Draw up the law of distribution of 

the number of standard parts among the selected and find the 

mathematical expectation and variance of this random variable. 

152. Among 10 pairs of shoes, 2 need repair. Draw up a law for the 

distribution of the number of pairs of shoes that need repair among 

three pairs taken at the same time. Find the mathematical expectation 

and variance of this random variable. 

153. A student can take the exam no more than three times. Draw the law of 

the distribution of a random variable – the number of attempts to pass 

the exam, if the probability of passing it is 0,75 and continues to 

increase by 0,1 in each subsequent attempt. Find the mathematical 

expectation and variance of this random variable. 
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Topic 12. "Numerical characteristics  

of continuous random variables" 
 

154. The random variable   is distributed according to 

the "right triangle law" on the interval [0; ]a . 

Find: the mathematical expectation E , the 

variance D , the standard deviation sk and the 

third central moment 3  of this random variable. 

155. The edge of the cube is measured approximately, and a x b  . 

Considering the length of the edge of the cube as a random variable   

distributed uniformly in the interval [ ; ]a b . Find the mathematical 

expectation 
3E  of the volume of the cube. 

156. (Exponential distribution.) The random variable   has the distribution 

density  

0, 0,
( )

, 0.t

t
f t

te  


 

  

Plot the distribution function ( )F t  and find E  and D . 

157. The random variable   has the distribution density 1( ) sin
2

f x x   in 

the interval [0; ] . Outside this interval ( ) 0f x  . Find the 

mathematical expectation of the random variable 
2( )      

(without first finding the distribution density of the random variable  ). 

158. The random variables   and   are independent. Find the variance of 

the random variable 3 2z    , if  5D  , 6D  . 

          )(xf             

    b     
             

                 
      

                             

    

     a      x  
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159. The continuous random variable   obeys the distribution law with 

density | |( ) xf x A e

  . Determine the coefficient A, the mathematical 

expectation E , the variance D  and the standard deviation  . 

160. The random variable   has the following 

distribution law: Determine the mathematical 

expectation E  , the variance D  and the 

standar deviation  . 

161. The distribution curve of the random variable   is the upper arc of an 

ellipse with semi-axes a and b. The quantity a is known. Determine the 

mathematical expectation E , variance D  and the standar deviation 

  of this random variable. 

162. The density of the distribution of the random variable   is given by the 

formula:  

0, 0,

( ) , 0 2,

0, 2.

x

f x ax x

x






  
 

 

Find the constant a, the variance of the random variable  . Calculate 

the probability that the deviation of the random variable   from its 

mathematical expectation will be no more than 0.5. 

163. The density of the distribution of the random variable   is given by the 

formula:  

2

0, 0,

( ) 3 , 0 1,

0, 1.

x

f x x x

x






  
 

 

Find the mode, median and mathematical expectation of the value  . 

   

 

        )(xf             

  
             

       

                             

    

   1        x  
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164. Prove that if   and   are independent random variables, then 

2 2( ) ( ) ( )D D D E D E D            . 

165. The given density of the distribution of the random variable  :  

2

2

0, 0,

3 , 0 1,
2

( )
3 (2 ) , 1 2,
2

0, 2.

x

x x

f x

x x

x






 


 
   

 

 

Find: a) initial and central moments of the first four orders;  

b) asymmetry and excess of this random variable. 

166. The random variable   has an arcsine law with probability distribution 

density  

2 2

1 , | | ,
( )

0, | | .

x a
f x a x

x a
 

 
 
 

 

Find: a) distribution function; b) E  and D ; c) mode and median. 

167. The random variable   is uniformly distributed. 4E  , 3D  . Find 

the density of the distribution of the random variable  . 

168. Let   be a random variable uniformly distributed over the interval 

[ 1, 1] . Find the distribution of the random variable | |  . 

169. Let   be a random variable uniformly distributed over the interval 

(0, 1) . Find the distribution function of the random variable 1ln


 . 

Calculate E . 



109 

170. The random variable   has the distribution density  

 
2

2

( )

21

2

x a

f x e 


 




 . 

Find: a) E  and D ; b) the probability that the random variable will 

take a value that belongs to the interval ( , )  ; c) the mode and median 

of the random variable  . 

171. (Rule of 3 ). The random variable   – measurement error – is 

distributed according to the normal law. Find the probability that ks will 

take a value between 3  and 3 , where   is the standard deviation 

of   (it is assumed that there are no systematic errors). 

172. Prove that if the random variable   is distributed according to the 

normal law, then the linear function A B    ( 0)A   also has a 

normal distribution. 

173. The random variable   has a normal distribution with mathematical 

expectation 0 and variance 2 . Find 
kE , 1,2,...k   

  



110 

Appendix 

The value of the function  
21

21

2

x
x e




       Table 1 

x 0 1 2 3 4 5 6 7 8 9 

0,0 0,3989 0,3989 0,3989 0,3988 0,3986 0,3984 0,3982 0,3980 0,3977 0,3973 

0,1 0,3970 0,3965 0,3961 0,3956 0,3951 0,3945 0,3939 0,3932 0,3925 0,3918 

0,2 0,3910 0,3902 0,3894 0,3885 0,3876 0,3867 0,3857 0,3847 0,3836 0,3825 

0,3 0,3814 0,3802 0,3790 0,3778 0,3765 0,3752 0,3739 0,3726 0,3712 0,3698 

0,4 0,3683 0,3668 0,3652 0,3637 0,3621 0,3605 0,3589 0,3572 0,3555 0,3538 

0,5 0,3521 0,3503 0,3485 0,3467 0,3448 0,3429 0,3410 0,3391 0,3372 0,3352 

0,6 0,3332 0,3312 0,3292 0,3271 0,3251 0,3230 0,3209 0,3187 0,3166 0,3144 

0,7 0,3123 0,3101 0,3079 0,3056 0,3034 0,3011 0,2989 0,2966 0,2943 0,2920 

0,8 0,2897 0,2874 0,2850 0,2827 0,2803 0,2780 0,2756 0,2732 0,2709 0,2685 

0,9 0,2661 0,2637 0,2613 0,2589 0,2565 0,2541 0,2516 0,2492 0,2468 0,2444 
           

1,0 0,2420 0,2396 0,2371 0,2347 0,2323 0,2299 0,2275 0,2251 0,2227 0,2203 

1,1 0,2179 0,2155 0,2131 0,2107 0,2083 0,2059 0,2036 0,2012 0,1989 0,1965 

1,2 0,1942 0,1919 0,1895 0,1872 0,1849 0,1826 0,1804 0,1781 0,1758 0,1736 

1,3 0,1714 0,1691 0,1669 0,1647 0,1626 0,1604 0,1582 0,1561 0,1539 0,1518 

1,4 0,1497 0,1476 0,1456 0,1435 0,1415 0,1394 0,1374 0,1354 0,1334 0,1315 

1,5 0,1295 0,1276 0,1257 0,1238 0,1219 0,1200 0,1182 0,1163 0,1145 0,1127 

1,6 0,1109 0,1092 0,1074 0,1057 0,1040 0,1023 0,1006 0,0989 0,0973 0,0957 

1,7 0,0940 0,0925 0,0909 0,0893 0,0878 0,0863 0,0848 0,0833 0,0818 0,0804 

1,8 0,0790 0,0775 0,0761 0,0748 0,0734 0,0721 0,0707 0,0694 0,0681 0,0669 

1,9 0,0656 0,0644 0,0632 0,0620 0,0608 0,0596 0,0584 0,0573 0,0562 0,0551 
           

2,0 0,0540 0,0529 0,0519 0,0508 0,0498 0,0488 0,0478 0,0468 0,0459 0,0449 

2,1 0,0440 0,0431 0,0422 0,0413 0,0404 0,0395 0,0387 0,0379 0,0371 0,0363 

2,2 0,0353 0,0347 0,0339 0,0332 0,0325 0,0317 0,0310 0,0303 0,0297 0,0290 

2,3 0,0283 0,0277 0,0270 0,0264 0,0258 0,0252 0,0246 0,0241 0,0235 0,0229 

2,4 0,0224 0,0219 0,0213 0,0208 0,0203 0,0198 0,0194 0,0189 0,0184 0,0180 

2,5 0,0175 0,0171 0,0167 0,0163 0,0158 0,0154 0,0151 0,0147 0,0143 0,0139 

2,6 0,0136 0,0132 0,0129 0,0126 0,0122 0,0119 0,0116 0,0113 0,0110 0,0107 

2,7 0,0104 0,0101 0,0099 0,0096 0,0093 0,0091 0,0088 0,0086 0,0084 0,0081 

2,8 0,0079 0,0077 0,0075 0,0073 0,0071 0,0069 0,0067 0,0065 0,0063 0,0061 

2,9 0,0060 0,0058 0,0056 0,0055 0,0053 0,0051 0,0050 0,0048 0,0047 0,0046 
           

3,0 0,0044 0,0043 0,0042 0,0040 0,0039 0,0038 0,0037 0,0036 0,0035 0,0034 

3,1 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026 0,0025 0,0025 

3,2 0,0024 0,0023 0,0022 0,0022 0,0021 0,0020 0,0020 0,0019 0,0018 0,0018 

3,3 0,0017 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014 0,0013 0,0013 

3,4 0,0012 0,0012 0,0012 0,0011 0,0011 0,0010 0,0010 0,0010 0,0009 0,0009 

3,5 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007 0,0007 0,0007 0,0006 

3,6 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0004 

3,7 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003 0,0003 0,0003 0,0003 

3,8 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002 0,0002 0,0002 0,0002 0,0002 

3,9 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0001 
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The value of the function  
21

21

2

x
x e




       Table 2 

x Ф(х) x Ф(х) x Ф(х) x Ф(х) x Ф(х) x Ф(х) 

0,00 0,0000 0,43 0,1664 0,86 0,3051 1,29 0,4015 1,72 0,4573 2,30 0,4893 

0,01 0,0040 0,44 0,1700 0,87 0,3078 1,30 0,4032 1,73 0,4582 2,32 0,4898 

0,02 0,0080 0,45 0,1736 0,88 0,3106 1,31 0,4049 1,74 0,4591 2,34 0,4904 

0,03 0,0120 0,46 0,1772 0,89 0,3133 1,32 0,4066 1,75 0,4599 2,36 0,4909 

0,04 0,0160 0,47 0,1808 0,90 0,3159 1,33 0,4082 1,76 0,4608 2,38 0,4913 

0,05 0,0199 0,48 0,1844 0,91 0,3186 1,34 0,4099 1,77 0,4616 2,40 0,4918 

0,06 0,0239 0,49 0,1879 0,92 0,3212 1,35 0,4115 1,78 0,4625 2,42 0,4922 

0,07 0,0279 0,50 0,1915 0,93 0,3238 1,36 0,4131 1,79 0,4633 2,44 0,4927 

0,08 0,0319 0,51 0,1950 0,94 0,3264 1,37 0,4147 1,80 0,4641 2,46 0,4931 

0,09 0,0359 0,52 0,1985 0,95 0,3289 1,38 0,4162 1,81 0,4649 2,48 0,4934 

0,10 0,0398 0,53 0,2019 0,96 0,3315 1,39 0,4177 1,82 0,4656 2,50 0,4938 

0,11 0,0438 0,54 0,2054 0,97 0,3340 1,40 0,4192 1,83 0,4664 2,52 0,4941 

0,12 0,0478 0,55 0,2088 0,98 0,3365 1,41 0,4207 1,84 0,4671 2,54 0,4945 

0,13 0,0517 0,56 0,2123 0,99 0,3389 1,42 0,4222 1,85 0,4678 2,56 0,4948 

0,14 0,0557 0,57 0,2157 1,00 0,3413 1,43 0,4236 1,86 0,4686 2,58 0,4951 

0,15 0,0596 0,58 0,2190 1,01 0,3438 1,44 0,4251 1,87 0,4693 2,60 0,4953 

0,16 0,0636 0,59 0,2224 1,02 0,3461 1,45 0,4265 1,88 0,4699 2,62 0,4956 

0,17 0,0675 0,60 0,2257 1,03 0,3485 1,46 0,4279 1,89 0,4706 2,64 0,4959 

0,18 0,0714 0,61 0,2291 1,04 0,3508 1,47 0,4292 1,90 0,4713 2,66 0,4961 

0,19 0,0753 0,62 0,2324 1,05 0,3531 1,48 0,4306 1,91 0,4719 2,68 0,4963 

0,20 0,0793 0,63 0,2357 1,06 0,3554 1,49 0,4319 1,92 0,4726 2,70 0,4965 

0,21 0,0832 0,64 0,2389 1,07 0,3577 1,50 0,4332 1,93 0,4732 2,72 0,4967 

0,22 0,0871 0,65 0,2422 1,08 0,3599 1,51 0,4345 1,94 0,4738 2,74 0,4969 

0,23 0,0910 0,66 0,2454 1,09 0,3621 1,52 0,4357 1,95 0,4744 2,76 0,4971 

0,24 0,0948 0,67 0,2486 1,10 0,3643 1,53 0,4370 1,96 0,4750 2,78 0,4973 

0,25 0,0987 0,68 0,2517 1,11 0,3665 1,54 0,4382 1,97 0,4756 2,80 0,4974 

0,26 0,1026 0,69 0,2549 1,12 0,3686 1,55 0,4394 1,98 0,4761 2,82 0,4976 

0,27 0,1064 0,70 0,2580 1,13 0,3708 1,56 0,4406 1,99 0,4767 2,84 0,4977 

0,28 0,1103 0,71 0,2611 1,14 0,3729 1,57 0,4418 2,00 0,4772 2,86 0,4979 

0,29 0,1141 0,72 0,2642 1,15 0,3749 1,58 0,4429 2,02 0,4783 2,88 0,4980 

0,30 0,1179 0,73 0,2673 1,16 0,3770 1,59 0,4441 2,04 0,4793 2,90 0,4981 

0,31 0,1217 0,74 0,2703 1,17 0,3790 1,60 0,4452 2,06 0,4803 2,92 0,4982 

0,32 0,1255 0,75 0,2734 1,18 0,3810 1,61 0,4463 2,08 0,4812 2,94 0,4984 

0,33 0,1293 0,76 0,2764 1,19 0,3830 1,62 0,4474 2,10 0,4821 2,96 0,4985 

0,34 0,1331 0,77 0,2794 1,20 0,3849 1,63 0,4484 2,12 0,4830 2,98 0,4986 

0,35 0,1368 0,78 0,2823 1,21 0,3869 1,64 0,4495 2,14 0,4838 3,00 0,49865 

0,36 0,1406 0,79 0,2852 1,22 0,3883 1,65 0,4505 2,16 0,4846 3,20 0,49931 

0,37 0,1443 0,80 0,2881 1,23 0,3907 1,66 0,4515 2,18 0,4854 3,40 0,49966 

0,38 0,1480 0,81 0,2910 1,24 0,3925 1,67 0,4525 2,20 0,4861 3,60 0,499841 

0,39 0,1517 0,82 0,2939 1,25 0,3944 1,68 0,4535 2,22 0,4868 3,80 0,499928 

0,40 0,1554 0,83 0,2967 1,26 0,3962 1,69 0,4545 2,24 0,4875 4,00 0,499968 

0,41 0,1591 0,84 0,2995 1,27 0,3980 1,70 0,4554 2,26 0,4881 4,50 0,499997 

0,42 0,1628 0,85 0,3023 1,28 0,3997 1,71 0,4564 2,28 0,4887 5,00 0,499997 
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Table 3 

Probability ( )
!

m

P m
m

e 


    of Poisson distribution  

  λ    

m 
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

0 0,90484 0,81873 0,74082 0,67032 0,60653 0,54881 0,49659 0,44933 0,40657 

1 0,09048 0,16375 0,22225 0,26813 0,30327 0,32929 0,34761 0,35946 0,36591 

2 0,00452 0,01637 0,03334 0,05363 0,07582 0,09879 0,12166 0,14379 0,16466 

3 0,00015 0,00109 0,00333 0,00715 0,01264 0,01976 0,02839 0,03834 0,04940 

4 
 

0,00005 0,00025 0,00072 0,00158 0,00296 0,00497 0,00767 0,01111 

5 
  

0,00002 0,00006 0,00016 0,00036 0,00070 0,00123 0,00200 

6 
    

0,00001 0,00004 0,00008 0,00016 0,00030 

7 
       

0,00002 0,00004 

 

λ 

m 
1 2 3 4 5 6 7 8 9 10 

0 0,36788 0,13534 0,04979 0,01832 0,00674 0,00248 0,00091 0,00034 0,00012 0,00005 

1 0,36788 0,27067 0,14936 0,07326 0,03369 0,01487 0,00638 0,00268 0,00111 0,00045 

2 0,18394 0,27067 0,22404 0,14653 0,08422 0,04462 0,02234 0,01073 0,00500 0,00227 

3 0,06131 0,18045 0,22404 0,19537 0,14037 0,08924 0,05213 0,02863 0,01499 0,00757 

4 0,01533 0,09022 0,16803 0,19537 0,17547 0,13385 0,09123 0,05725 0,03374 0,01892 

5 0,00307 0,03609 0,10082 0,15629 0,17547 0,16062 0,12772 0,09160 0,06073 0,03783 

6 0,00051 0,01203 0,05041 0,10420 0,14622 0,16062 0,14900 0,12214 0,09109 0,06306 

7 0,00007 0,00344 0,02160 0,05954 0,10444 0,13768 0,14900 0,13959 0,11712 0,09008 

8 
 

0,00086 0,00810 0,2977 0,06528 0,10326 0,13038 0,13959 0,13176 0,11260 

9 
 

0,00019 0,00270 0,01323 0,03627 0,06884 0,10140 0,12408 0,13176 0,12511 

10 
 

0,00004 0,00081 0,00529 0,01813 0,04130 0,07098 0,09926 0,11858 0,12511 

11 
  

0,00022 0,00192 0,00824 0,02253 0,04517 0,07219 0,09702 0,11374 

12 
  

0,00006 0,00064 0,00343 0,01126 0,02635 0,04813 0,07277 0,09478 

13 
   

0,00020 0,00132 0,00520 0,01419 0,02962 0,05038 0,07291 

14 
   

0,00006 0,00047 0,00223 0,00709 0,01692 0,03238 0,05208 

15 
   

0,00002 0,00016 0,00089 0,00331 0,00903 0,01943 0,3472 

16 
    

0,00005 0,00033 0,00145 0,00451 0,01093 0,2170 

17 
    

0,00001 0,00012 0,00060 0,00212 0,00579 0,01276 

18 
     

0,00004 0,00023 0,00094 0,00289 0,00709 

19 
     

0,00001 0,00009 0,00040 0,00137 0,00373 

20 
      

0,00003 0,00016 0,00062 0,00187 

21 
       

0,00006 0,00026 0,00089 

22 
       

0,00002 0,00011 0,00040 

23 
        

0,00004 0,00018 

24 
        

0,00002 0,00007 

25 
         

0,00003 

26 
         

0,00001 
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