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Abstract: A novel electroanalytical process for nitrite and sulfite anodic electrochemical determination 

in wine, based on the 9-triphenylphosphazoacridine conducting polymer as an anode modifier, has been 

investigated. 9-triphenylphosphazoacridine  monomer may be obtained from 9-chloroacridine via 9-

azidoacridine by reacting it with triphenylphosphine in ether. As for the sulfite and nitrite 

electrooxidation to sulfate and nitrate correspondently is given in conducting polymer matrix by two 

doping types. The analysis of the model has confirmed the efficiency of poly(9-

triphenylphosphazo)acridine as an electrode modifier for sulfite and nitrite determination in wine, 

although the oscillatory behavior is relatively probable.       
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1. Introduction 

Both sulfites and nitrites are ions naturally occurring in food and beverages [1 – 4] from 

correspondent plant biosynthesis. Moreover, sulfites are widely used as conservant food 

additives in food preparation, storage, and even in natural violin and guitar catgut string 

production [4].   

Nevertheless, sulfites and especially nitrite high concentrations in food and drink may 

be dangerous for human organisms [5 – 8]. Nitrite ion is thereby transformed into the highly 

toxic, mutagenic, and cancerogenic C- and N-nitrosocompounds. As for sulfite, it provokes 

hypersensitivity, allergic reaction, vitamin deficiency, and dysbiosis in gut microbiota (the 

same effect in violin/guitar string production). Moreover, both of the ions serve as markers for 

acid rain areas, the reason why their determination in food, beverages, and natural water is 

really actual [9 – 14].  

Both ions are amphoteric from the electrochemical point of view, as they 

correspondingly possess trivalent nitrogen and tetravalent sulfur. Therefore, both cathodic and 

anodic processes are viable for these ions. In this aspect, the anodic process involving the 

neutral conducting polymer [15 – 22] would be an interesting option from both 

electroanalytical and removal points of view, as both ions enter the polymer matrix by doping, 

thereby oxidizing. If the monomer possesses basic groups or pyridinic nitrogen atoms, two 

types of doping will be realized.   

The above-mentioned aspects are important for the mechanistic and dynamic behavior 

of the electroanalytical process. Moreover, the presence of the electrochemical instabilities, 

which makes it difficult to interpret the analytical signal, may be associated with the conducting 

polymer doping and electrooxidation [22 – 25]. Those instabilities are typical and may limit 

the electroanalytical and removal use of the electrochemical process. In order to foresee the 

possibility of the realization of the electrochemical instabilities, like the effect they may 

produce, it´s necessary to investigate the process from the mechanical point of view and 

analyze its behavior theoretically.  

So, the goal of this work is the mechanical evaluation for sulfite and nitrite 

determination and removal from wine on poly(9-triphenylphosphazo)acridine-modified anode, 

in which two doping mechanisms are realized. The correspondent mathematical model is 

developed and analyzed using linear stability theory and bifurcation analysis. The theoretical 

investigation includes comparing the behavior of this system with that of similar ones [26 – 

28].    

2. Materials and Methods 

The 9-triphenylphosphazoacridine monomer may be synthesized from 9-chloroacridine 

via 9-azidoacridine (Fig. 1), as reported in [26]. The monomer is obtained as a yellow-green 

crystalline compound.  
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Figure 1. The synthesis of 9-phosphazoacridine monomer. 
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Taking into account that the triphenylphosphazoic moiety has highly donating 

properties (donation of 20 electrons towards the acridine ring), the color of the monomer 

(yellow-green) slightly differs from the other acridine derivatives, which are mostly red, 

orange, and yellow. Moreover, its polymerization potential is slightly lower than the other 

acridine derivatives, including the yet-polymerized acridine orange and acridine yellow 

(acriflavine) [18-21, 26]. The polymerization will be thereby realized via positions 2 and 7 of 

the acridine ring, yielding an alternant conducting polymer (Fig. 2).  
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Figure 2. 9-phosphazoacridine polymerization scheme. 

 

Two types of doping are possible in this case. Besides the classical conducting polymer 

doping, in which the dopant-ion enters the matrix by cationic site, the N-doping, in which the 

pyridinic nitrogen atom is protonated or quaternized, is also realized. Moreover, if classical 

doping is purely electrochemical, then the second is purely chemical. Both influence the double 

electric layer (DEL) electrophysical and electrochemical properties, as described below.  

Taking this into account and accepting some assumptions [26 – 28], we describe the 

behavior of  this system by the balance differential equation-set (1):  

 

{
 
 

 
 

𝑑𝑛
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𝛿
(
𝛥

𝛿
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𝑑𝑠
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=

2

𝛿
(
𝐷

𝛿
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𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟𝑐1 + 𝑟𝑛1 + 𝑟𝑐2 + 𝑟𝑛2 − 𝑟𝑂)

                                   (1) 

 

in which n and s are nitrite and sulfite concentrations in the pre-surface layer, 𝑛0 and  

𝑠0 are the bulk concentrations of the correspondent ions, 𝛿 is the pre-surface layer thickness, 

𝛥, and D are the diffusion coefficients, p is the doped polymer surface coverage degree, P is 

the doped polymer maximal surface concentration, and the parameters r stand for the 

correspondent reaction rates:  

 

𝑟𝑐1 = 𝑘𝑐1𝑛(1 − 𝑝) exp (
𝑥1𝐹𝜑0

𝑅𝑇
)                                          (2) 

𝑟𝑛1 = 𝑘𝑛1𝑛(1 − 𝑝) exp(−𝑎𝑛)                                           (3) 

𝑟𝑐2 = 𝑘𝑐2𝑠(1 − 𝑝) exp (
𝑥2𝐹𝜑0

𝑅𝑇
)                                          (4) 

𝑟𝑛2 = 𝑘𝑛2𝑠(1 − 𝑝) exp(−𝑎𝑠)                                           (5) 

𝑟𝑂 = 𝑘𝑂𝑝 exp (
𝑦𝐹𝜑0

𝑅𝑇
)                                                  (6) 
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Herein, the parameters k are the correspondent reaction rate constants, and a is the 

variable relating the DEL electrochemical and electrophysical properties with nitrite and sulfite 

concentrations, 𝑥1, 𝑥2 and 𝑦 are the numbers of electrons transferred during the electrochemical 

stages, F is the Faraday number, 𝜑0 is the zero-charge related potential slope in DEL, R is the 

universal gas constant, and T is the absolute temperature.  

In this system, both doping and polymer electrooxidation types are responsible for the 

appearance of the oscillatory and monotonic instabilities. Nevertheless, the system will be 

efficient from both electroanalytical and electrosynthetical points of view, as shown below.   

3. Results and Discussion 

We describe the behavior of this system by analyzing the equation-set (1), alongside 

the algebraic relations (2 – 6) by means of linear stability theory and expose the steady-state 

Jacobian matrix members as (7):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                              (7) 

 

In which:  

 

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘𝑐1(1 − 𝑝)𝑒𝑥𝑝 (

𝑥1𝐹𝜑0

𝑅𝑇
) − 𝑘𝑛1(1 − 𝑝)𝑒𝑥𝑝(−𝑎𝑛) + 𝑎𝑘𝑛1𝑛(1 − 𝑝) 𝑒𝑥𝑝(−𝑎𝑛))   (8) 

𝑎12 = 0                                                            (9) 

𝑎13 =
2

𝛿
(𝑘𝑐1𝑛(1 − 𝑝)exp (

𝑥1𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘𝑐1𝑛(1 − 𝑝) exp (

𝑥1𝐹𝜑0

𝑅𝑇
) + 𝑘𝑛1𝑛(1− 𝑝)exp(−𝑎𝑛)) (10) 

𝑎21 = 0                                                           (11) 

𝑎22 =
2

𝛿
(−

𝐷

𝛿
− 𝑘𝑐2𝑠(1 − 𝑝) exp (

𝑥2𝐹𝜑0

𝑅𝑇
) − 𝑘𝑛2(1 − 𝑝) exp(−𝑎𝑠) + 𝑎𝑘𝑛2𝑠(1 − 𝑝) exp(−𝑎𝑠))      (12) 

𝑎23 =
2

𝛿
(𝑘𝑐2𝑠 exp (

𝑥2𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘𝑐2𝑠(1 − 𝑝) exp (

𝑥2𝐹𝜑0

𝑅𝑇
) + 𝑘𝑛2𝑠 exp(−𝑎𝑠))            (13) 

𝑎31 =
2

𝛿
(𝑘𝑐1(1 − 𝑝) 𝑒𝑥𝑝 (

𝑥1𝐹𝜑0

𝑅𝑇
) + 𝑘𝑛1(1 − 𝑝) 𝑒𝑥𝑝(−𝑎𝑛) − 𝑎𝑘𝑛1𝑛(1 − 𝑝)𝑒𝑥𝑝(−𝑎𝑛))   (14) 

𝑎32 =
2

𝛿
(𝑘𝑐2𝑠(1 − 𝑝) exp (

𝑥2𝐹𝜑0

𝑅𝑇
) + 𝑘𝑛2(1 − 𝑝) exp(−𝑎𝑠) − 𝑎𝑘𝑛2𝑠(1 − 𝑝) exp(−𝑎𝑠))    (15) 

𝑎33 =
2

𝛿
(−𝑘𝑐1𝑛(1 − 𝑝) exp (

𝑥1𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑐1𝑛(1 − 𝑝)exp (

𝑥1𝐹𝜑0

𝑅𝑇
) − 𝑘𝑛1𝑛(1 − 𝑝)exp(−𝑎𝑛) −

𝑘𝑐2𝑠 exp (
𝑥2𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑐2𝑠(1 − 𝑝)exp (

𝑥2𝐹𝜑0

𝑅𝑇
) − 𝑘𝑛2𝑠 exp(−𝑎𝑠) − 𝑘𝑂 exp (

𝑦𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑂𝑝 exp (

𝑦𝐹𝜑0

𝑅𝑇
))    (16) 

 

Taking into account the main diagonal elements (8), (12), and (16), we may observe the 

positive elements, describing the positive callback. The presence of these elements depicts the 

possibility of the Hopf bifurcation, which corresponds to the oscillatory behavior. As in similar 

systems [26 – 28], the oscillatory behavior will be caused by DEL influences of both chemical 

and electrochemical reactions, and the oscillation pattern will be dependent on the background 

electrolyte ionic composition, including pH.  

Besides the positivity of the elements 𝑗𝑘𝑐1𝑛(1 − 𝑝) exp (
𝑥1𝐹𝜑0

𝑅𝑇
) > 0, 𝑗𝑘𝑐2𝑠(1 −

𝑝) exp (
𝑥2𝐹𝜑0

𝑅𝑇
) > 0 and 𝑗𝑘𝑂𝑝 exp (

𝑦𝐹𝜑0

𝑅𝑇
) > 0 if j>0, describing the oscillatory behavior caused by the 

DEL conductivity influences of the electrochemical doping and oxidation, the positive 

elements are 𝑎𝑘𝑛1𝑛(1 − 𝑝)𝑒𝑥𝑝(−𝑎𝑛) > 0 and 𝑎𝑘𝑛2𝑠(1 − 𝑝) exp(−𝑎𝑠) > 0 if a>0, describing the same 

influences of chemical doping. In this system, the positive elements, related to the chemical 

stages and electrochemical stages, belong to different matrix elements.  
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As for the steady-state stability, we investigate it by applying the Routh-Hurwitz 

criterion to the equation set (1). In order to facilitate the analysis, we rewrite the Jacobian 

determinant as (17):  

 

4

𝛿2𝐶
|
−𝜅 − 𝛯 0 𝛵
0 −𝜆 − 𝛴 𝛲
𝛯 𝛴 −𝛵 − 𝛲 − 𝛺

|                                            (17) 

 

avoiding thereby the cumbersome expressions.  

Opening the brackets, applying the Det J<0 requisite, salient from the criterion, and 

changing the signs to the opposite, we obtain the steady-state stability requisite, exposed as 

(18):  

 

𝜅(𝜆𝛵 + 𝜆𝛲 + 𝜆𝛺 + 𝛴𝛵 + 𝛴𝛺) + 𝛯(𝜆𝛲 + 𝜆𝛺 + 𝛴𝛺) > 0                           (18) 

 

And this requisite will be readily satisfied if the kinetic parameters T, P, Ω, Ξ, and Σ 

are positive (their negativity may lead to the instabilities, including the oscillatory instability 

described above and the monotonic instability described below). Considering that the diffusion 

parameters  κ and λ are always positive, the left-side expression of the inequation (18) will be 

driven to more positive values, stabilizing the system, which will be thereby kinetically 

controlled, with the possibility of transition to the diffusion-controlled mode.  

From the electroanalytical point of view, it corresponds to the linear dependence 

between the electrochemical parameter and concentration, which provides efficient analytical 

signal interpretation. From the removal point of view, it corresponds to efficient sulfite and 

nitrite removal from wine in an easily maintained steady-state mode. The topological region 

corresponding to this behavior is relatively wide, confirming the efficiency of poly(9-

triphenylphosphazo)acridine-modified electrode for nitrite and sulfite determination and 

removal.  

As for the detection limit, it is described by monotonic instability, which occurs in the 

point at which the stable steady states are separated from the unstable states. Its condition for 

this system is Det J =0 or (19):     

𝜅(𝜆𝛵 + 𝜆𝛲 + 𝜆𝛺 + 𝛴𝛵 + 𝛴𝛺) + 𝛯(𝜆𝛲 + 𝜆𝛺 + 𝛴𝛺) > 0                           (19) 

The oscillatory instability will require more negative values of the parameters T, P, Ω, 

Ξ and Σ, being therefore realized beyond the detection limit (19).  

The same type of behavior will be observed if the squaraine dyes containing pyridinic 

nitrogen atoms are used. If not, the elements rn1 and rn2 will be annihilated, and the model (1) 

will be simplified, according to [27 – 28].  

4. Conclusions 

From the analysis of the system with poly(9-triphenylphosphazo)acridine-assisted 

nitrite and sulfite electrochemical determination and removal from wine, it was possible to 

conclude that this process is a highly efficient, mostly kinetically controlled process, in which 

the linear dependence between the electrochemical parameter and concentration is easily 

obtained and maintained. Although the oscillatory behavior is highly probable in this system, 

it is realized beyond the detection limit, and its pattern depends on the background electrolyte 
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composition. Either way, poly(9-triphenylphosphazo)acridine is an efficient electrode modifier 

for nitrite and sulfite determination and elimination from wine.  
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