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Abstract. We characterize the uniform convergence points set of a pointwisely convergent sequence of real-valued
functions defined on a perfectly normal space. We prove that if X is a perfectly normal space which can be covered
by a disjoint sequence of dense subsets and A ⊆ X, then A is the set of points of the uniform convergence for some

convergent sequence (fn)n∈ω of functions fn : X → R if and only if A is Gδ-set which contains all isolated points of
X. This result generalizes a theorem of Ján Borśık published in 2019.

Dedicated to the memory of Ján Borśık

1. Introduction

Let X be a topological space, (Y, | ·− · |) be a metric space; B(a, r) and B[a, r] be an open and a
closed ball in Y with a center a ∈ Y and a radius r > 0, respectively. By ∂A we denote a boundary
of a set A.

Let F = (fn)n∈ω be a sequence of functions fn : X → Y . We denote PC(F ) the set of all
points x ∈ X such that the sequence (fn(x))n∈ω is convergent in Y . Therefore, we define the limit
function f(x) by the rule f(x) = limn→∞ fn(x) for all x ∈ PC(F ). Let us observe that the set
PC(F ) can be represented in the form

PC(F ) =
∩
k∈ω

∪
n∈ω

∩
m∈ω

f−1
n+m(B[f(x), 1

k+1
]).(1.1)

If every function fn is continuous, then the set PC(F ) is Fσδ in X. Hans Hahn [6] and Wac law
Sierpiński [11] proved independently that the converse proposition is true for metrizable X and
Y = R, that is, for every Fσδ-subset A of a metrizable space X there exists a sequence F of
real-valued continuous functions fn : X → R such that A = PC(F ).

After appearance of this theorem many results were obtained in similar directions: other types
of convergence and other classes of functions were considered (see, for instance, [1, 4, 7, 8, 9, 10, 12,
13, 14]). Ján Borśık studied in [1], in particular, the uniform convergence points set of a (convergent
pointwisely) sequence of functions.

Definition 1. A sequence (fn)n∈ω of functions fn : X → Y between a topological space X and a
metric space (Y, | · − · |) is uniformly Cauchy at a point x0 ∈ X, if for every ε > 0 there exist a
neighborhood U of x0 and a number n0 ∈ ω such that |fn(x) − fm(x)| < ε for all n,m ≥ n0 and
x ∈ U .

Let UC(F ) be a set of all points with the uniform Cauchy property for a sequence F = (fn)n∈ω.
It is easy to see that if (fn)n∈ω is convergent pointwisely on X to a function f : X → Y , then

UC(F ) = {x ∈ X : ∀ε > 0 ∃U ∋ x0 ∃n0 ∀n ≥ n0 |fn(y) − f(y)| < ε ∀y ∈ U}.(1.2)

Moreover, in this case UC(F ) is the set of all points of the uniform convergence of F .
Borśık proved the following result.
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Theorem A (Borśık, [1]). Let X be a metric space and A ⊆ X. Then A = UC(F ) for some
convergent sequence F = (fn)n∈ω of functions fn : X → R if and only if A is Gδ and contains all
isolated points of X.

This short note is inspirited by the above mentioned paper of Ján Borśık. We generalize his
theorem on a wider class of topological spaces.

Definition 2. A topological space X is ω-resolvable if there exists a partition {Xn : n ∈ ω} of X
by dense subsets.

For crowded spaces (i.e., spaces without isolated points) the class of all ω-resolvable spaces in-
cludes all metrizable spaces, Hausdorff countably compact spaces, arcwise connected spaces, etc. [2]

The main result of our note is the following theorem.

Theorem 1. Let X be a perfectly normal ω-resolvable space and A ⊆ X. The following conditions
are equivalent:

(i) A is a set of all points of uniform convergence for some convergent sequence (fn)n∈ω of
functions fn : X → R;

(ii) A is a Gδ-set which contains all isolated points of X.

2. Proof of Theorem 1

The implication (i) ⇒ (ii) follows immediately from the equality (1.2).
(ii) ⇒ (i). Let (Gn)n∈ω be a sequence of open sets in X such that A =

∩
n∈ω Gn, Gn+1 ⊆ Gn

for every n ∈ ω and let G0 = X.
Since X is perfectly normal, for every n ∈ N there exist continuous functions φn, ψn : X → [0, 1]

such that φ−1
n (0) = Gn and ψ−1

n (0) = X \Gn. Then every function αn : X → [−1, 1] defined by the
formula αn = φn − ψn has the following properties:

αn(x) < 0 ∀x ∈ Gn,

αn(x) = 0 ∀x ∈ ∂Gn,

αn(x) > 0 ∀x ∈ X \Gn.

We consider functions βn : X → [−1, 1] defined by the rule

βn(x) = max
i≤n

αi(x)

for all x ∈ X. Then we claim that

∂Gn = β−1
n (0)

for every n ∈ N. We need to prove βn(x) = 0 ⇔ αn(x) = 0 for every x ∈ X. Assume that
βn(x) = 0. Then αi(x) ≤ 0 for all i ≤ n and αk(x) = 0 for some k ≤ n. Then x ∈ Gi for all i ≤ n. If
x ̸∈ ∂Gn, then x ∈ Gn ⊆ Gi for all i ≤ n, consequently, αk(x) < 0, a contradiction. Hence, x ∈ ∂Gn

and αn(x) = 0. Conversely, if αn(x) = 0, then x ∈ ∂Gn ⊆ Gn ⊆ Gi for all i ≤ n. In consequence,
αi(x) ≤ 0 for all i < n and βn(x) = 0.

Now we put

γn(x) = min
i≤n

|βi(x)|

and notice that

γ−1
n (0) =

∪
i≤n

∂Gi.
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Finally, let

δn(x) =

{
0, x ∈ Gn,
γn(x), x ∈ X \Gn.

Obviously, the functions βn, γn and δn are continuous and δn ≤ γn.
We put Uk,0 = Fk,0 = ∅, k ∈ N. For all k, n ∈ N we define

Uk,n = γ−1
n ([0, 1

k
)) and Fk,n = δ−1

n ([ 1
k
, 1]).

The sets Uk,n and Fk,n satisfy the following conditions:

(A) Uk,n is open and Fk,n is closed in X,

(B) Uk+1,n ⊆ Uk,n ⊆ Uk,n+1,

(C) Fk,n ⊆ Fk+1,n ∩ Fk,n+1,

(D) δ−1
n ((0, 1]) =

∪
k∈N Fk,n = X \

(∪n
i=1 ∂Gi ∪Gn

)
,

(E) γ−1
n (0) =

∪n
i=1 ∂Gi =

∩
k∈N Uk,n,

(F) Uk,n ∩ Fk,n = ∅

for all k, n ∈ N.
Moreover, the sets Gn satisfy the property

(G) (∂Gn \ ∂Gn−1) ∩ ∂Gi = ∅, i < n, n ∈ N.

Since the most of properties are evident, we prove only (C) and (G).
(C). It is enough to prove that Fk,n ⊆ Fk,n+1. Fix x ∈ Fk,n for some k, n ∈ N. Then δn(x) ≥ 1

k

and, in consequence, x ̸∈ Gn. Therefore, αn(x) > 0 and αn+1(x) > 0. Hence, βn(x) > 0 and
βn+1(x) > 0. Since γn(x) = δn(x) ≥ 1

k
, the inequality |βi(x)| ≥ 1

k
holds for all i ≤ n. In particular,

|βn(x)| = βn(x) ≥ 1
k
. Then |βn+1(x)| = βn+1(x) ≥ βn(x) ≥ 1

k
. Thus, δn+1(x) = γn+1(x) =

min
i≤n+1

|βi(x)| ≥ 1
k

and x ∈ Fk,n+1.

(G). Fix x ∈ ∂Gn \ ∂Gn−1. Since x ∈ ∂Gn, x ∈ Gn \ Gn. Then x ∈ Gn−1, because the
sequence (Gn)n∈ω is decreasing. Moreover, x ̸∈ ∂Gn−1 and therefore x ∈ Gn−1. Again, since
(Gn)n∈ω decreases, x ∈ Gi for all i < n. Hence, x ̸∈ ∂Gi, i < n.

Since X \ A is an open subset of the ω-resolvable space X, it is ω-resolvable also. Hence, there
exists a sequence (Bk)k∈ω of mutually disjoint subsets of X \ A such that

X \ A =
∪
k∈ω

Bk

and each set Bk in dense in X \ A.
For every x ∈ X we put

f(x) =

{
1
n
, x ∈ ∂Gn \ ∂Gn−1 for some n ∈ N,

0, otherwise.
(2.1)

Notice that f is correctly defined because of property (G).
Now let

Ck,n = (Uk,n \ Uk,n−1) ∪ (Bk ∩ (Fk,n \ Fk,n−1))
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and

fk(x) =

{
1
n
, if x ∈ Ck,n for some n ≥ k,

0, otherwise.

In order to show that (fk)k∈ω converges to f pointwisely on X we fix x ∈ X.
If x ∈

∪
n∈ω ∂Gn, then we put N = min{n ∈ ω : x ∈ ∂Gn}. Therefore, since ∂G0 = ∅, property

(G) implies that N ∈ N and x ∈ ∂GN \
∪

i<N ∂Gi = ∂GN \ ∂GN−1. Hence, f(x) = 1
N

. Then by
(F) we conclude that x ∈ ∂GN ⊆

∩
k∈N Uk,N and x ̸∈

∩
i<N−1 ∂Gi =

∩
k∈N Uk,N−1. In consequence,

taking into account (B) we conclude that there exists K ∈ ω such that x ∈ Uk,N \ Uk,N−1 for all
k ≥ K. Therefore, fk(x) = 1

N
= f(x) for all k ≥ K. Hence, limk→∞ fk(x) = f(x).

If x ̸∈
∪

n∈ω ∂Gn, then f(x) = 0. Let ε > 0 and n ∈ N be such that 1
n
< ε. Using (F) we

conclude that x ̸∈
∪

i≤n ∂Gi =
∩

k∈N Uk,n. Then, taking into account (B), we obtain that there is
K1 ∈ N such that x ̸∈ Uk,n for all k ≥ K1. But x ∈

∪
k∈ω Bk and the sets Bk are disjoint, so there

is K > K1 such that x ̸∈
∪

k≥K Bk. Therefore, we have x ̸∈
∪

k≥K(Uk,n ∪Bk).
Assume that k ≥ K. Consider the case x ∈ Uk,k. Then we choose the minimal number m ≤ k

such that x ∈ Uk,m. Then m > n (indeed, if m ≤ n, then x ∈ Uk,m ⊆ Uk,n, a contradiction). In
particular, m > 1 and x ∈ Uk,m \ Uk,m−1 ⊆ Ck,m. Therefore, fk(x) = 1

m
< 1

n
< ε. Now we consider

the case x ̸∈ Uk,k, then (B) implies that x ̸∈ Uk,n for any n ≤ k. But x ̸∈ Bk. Hence, x ̸∈ Ck,n for
every n ≥ k. Thus, fk(x) = 0 < ε.

Now we prove that A = UC(F ) for F = (fn)n∈ω. Fix x ∈ A, ε > 0 and let n0 ∈ N be such that
1
n0
< ε. Since x ∈ A, we conclude that x ∈ Gi for every i and then x ̸∈

∪
i≤n0

∂Gi =
∩

k∈N Uk,n0 .

Then there exists k0 ≥ n0 with x ̸∈ Uk0−1,n0 . Therefore, property (B) implies that x ̸∈ Uk,n0 for all
k ≥ k0.

We consider an open neighborhood

U = Gn0 \ Uk0,n0

of x in X. Take an arbitrary u ∈ U and k ≥ k0. Since u ∈ Gn0 , we have that u ∈ Gi and then
u ̸∈ ∂Gi for any i ≤ n0. Therefore,

f(u) ∈ [0, 1
n0

).(2.2)

Let us observe that (B) and (C) imply that Ck,n ⊆ Uk,k ∪ (Bk ∩ Fk,k) for all k ≥ n. Therefore,
if u ̸∈ Uk,k ∪ (Fk,k ∩Bk), then fk(u) = f(u) = 0.

Let us consider the case u ∈ Uk,k. Then we take the minimal i ≤ k such that x ∈ Uk,i. Notice
that i > n0 (indeed, if i ≤ n0, then (B) implies that u ∈ Uk,i ⊆ Uk,n0 ⊆ Uk0,n0 , a contradiction). In
particular, i > 1 and then u ∈ Uk,i \ Uk,i−1 ⊆ Ck,i. Thus, fk(u) = 1

i
< 1

n0
.

In the case u ∈ Fk,k we choose the minimal j ≤ k with u ∈ Fk,j. Observe that j > n0 (indeed,
if j ≤ n0, then u ∈ Fk,j ⊆ Fk,n0 , and so (D) implies u ̸∈ Gn0 , which is impossible). In particular,
j > 1 and u ∈ Bk ∩ (Fk,j \ Fk,j−1) ⊆ Ck,j. Therefore, fk(x) = 1

j
< 1

n0
.

Thus, we proved that in any case fk(u) ∈ [0, 1
n0

). Hence,

|f(u) − fk(u)| ≤ 1

n0

< ε.

Therefore, A ⊆ UC(F ).
Now we prove that UC(F ) ⊆ A. In order to do this we fix x ̸∈ A and show that x ̸∈ UC(F ) in

this case. Let n0 = max{n ∈ ω : x ∈ Gn}, ε = 1
n0+1

− 1
n0+2

, U be an open neighborhood of x and

let k0 ∈ ω. Notice that x ∈ Gn0 \Gn0+1.
Consider the case x ∈ Gn0+1. Then x ∈ Gn0+1 \ Gn0+1 = ∂Gn0+1. Therefore, (E) implies that

x ∈ ∂Gn0+1 ⊆
∩

k∈N Uk,n0+1. On the other hand, x ∈ Gn0 . So, x ̸∈ ∂Gi for any i ≤ n0. Using
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(E) we conclude that x ̸∈
∪

i≤n0
∂Gi =

∩
k∈N Uk,n0 . Then, there exists k1 ∈ N such that x ̸∈ Uk1,n0 .

Therefore, (B) implies that x ̸∈ Uk,n0 for all k ≥ k1. Hence, there exists k > max{k0, n0} such that
x ∈ Uk,n0+1 \ Uk,n0 .

Since the set
∪

n≤n0+1 ∂Gn is nowhere dense in X, there is a nonempty open set V such that V ⊆
U ∩ (Uk,n0+1 \ Uk,n0) \

∪
n≤n0+1 ∂Gn. Take u ∈ V . Then f(u) ∈ [0, 1

n0+2
], because u ̸∈

∪
n≤n0+1 ∂Gn,

and fk(u) = 1
n0+1

, since u ∈ Uk,n0+1 \ Uk,n0 . Therefore,

|f(u) − fk(u)| ≥ 1
n0+1

− 1
n0+2

= ε.

Now we assume that x ̸∈ Gn0+1. Then x ∈ Gn0 ̸∈ Gn0+1. Therefore, x ̸∈
∪

i≤n0+1 ∂Gi = γ−1
n0+1(0).

Consequently, γn0+1(x) > 0. So, there exists m0 ∈ N such that 1
m0

< γn0+1(x). But x ̸∈ Gn0+1.

Therefore, δn0+1(x) = γn0+1(x) > 1
m0

. Hence, x ∈ intFm0,n0+1.

By property (C), there exists a number k > max{k0,m0, n0} such that x ∈ intFk,n0+1. Since
x ∈ Gn0 , x ̸∈ Fk,n0 . Then the set

G = (U \Gn0+1) ∩ (intFk,n0+1 \ Fk,n0)

is an open neighborhood of x. Since
∪

n≤n0+1 ∂Gn is nowhere dense in X and Bk is dense in X \A,
there exists a point v ∈ X such that

v ∈ (G \
∪

n≤n0+1

∂Gn) ∩Bk.

Then fk(v) = 1
n0+1

, since v ∈ Ck,n0+1, and f(v) ∈ [0, 1
n0+2

], because v ̸∈
∪

n≤n0+1 ∂Gn. Hence,

|f(v) − fk(v)| ≥ 1
n0+1

− 1
n0+2

= ε.

Therefore, A = UC(F ). 2

Remark 1. Actually, we use in the proof only the fact that the boundary of every open set in
a topological space X is a functionally closed set. It is find out that this is a characterization of
perfectly normal spaces. Moreover, the following conditions are equivalent:

(i) X is a perfectly normal space;

(ii) every closed nowhere dense subset of X is functionally closed.

Evidently, (i) ⇒ (ii). In order to prove (ii) ⇒ (i) we take a closed set F ⊆ X. Since ∂F = F \intF is
closed and nowhere dense, there exists a continuous function g : X → [0, 1] such that ∂F = g−1(0).
Let us define f : X → [0, 1] by f(x) = g(x) if x ∈ X \ intF and f(x) = 0 if x ∈ intF . It is easy to
see that f is continuous and F = f−1(0). Therefore, X is perfectly normal by Vedenisoff’s theorem.

Remark 2. By one of reviewers, in Theorem 1 it is sufficient to assume that Y is a non-discrete
metric space.

Remark 3. Any topological vector space is ω-resolvable [2]. So, the space of all continuous function
Cp([0, 1]) equipped with the topology of pointwise convergence is an example of perfectly normal
ω-resolvable space which is not metrizable.

Remark 4. Eric K. van Douwen proved in [3, Theorem 5.2] that there exists a crowded countable
regular space which cannot be represented as a union of two disjoint dense subsets. It is easy to see
that this space is perfectly normal and not ω-resolvable.
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