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Abstract— In this research, we used the method of mobile 

cellular automata to study the dynamics of COVID-19. A 

number of simulation scenarios that take into account different 

quarantine restrictions are considered and compared. The 

simulation results revealed that self-isolation regimen is the 

most effective way to reduce the rate of infection. The simulation 

model that was developed in the work allows you to easily adapt 

and take into account new factors of quarantine restrictions. 
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I. INTRODUCTION  

Since the end of 2019, with the outbreak of the new 
COVID-19 virus, the world has completely changed in many 
aspects: the pandemic has affected the economy, education 
and science, the healthcare system and global society. 
Epidemic modeling is usually performed using 
compartmental models, often referred to as SIR models 
(Susceptibles–Infected–Recovered), research that began in the 
works of R. Ross and H. P. Hudson more than a century ago 
[1], [2] and the work of A. G. McKendrick and W. O. 
Kermack [3], [4]. 

Modern modeling strategies provide methods for the 
prevention and control of infectious diseases and mainly 
include: (a) isolation measures; (b) routine and practical 
measures to prevent the epidemic (such as the use of 
protective masks, ventilation, daily disinfection, etc.); (c) 
study and job suspension and other preventive and anti-
epidemic prevention and control measures. 

The paper investigates the simulation of coronavirus 
infection using mobile cellular automata, which are 
computational algorithms described by relatively simple local 
rules. The spread of the epidemic was simulated for different 
strategies, regimes, and approaches to the spread of the 
disease, which allows analysis and comparison of the 
restrictions imposed to control coronavirus infection. 

II. REVIEW OF SCIENTIFIC WORKS  

Traditionally, most existing mathematical models for 
modeling epidemics are based on the use of the apparatus of 
ordinary differential equations, so these models are used for a 
long time and for a certain period of time to simulate the 

dynamics of epidemics [4, 5]. Such models distinguish 
between suspected (S), infected (I) and recovered (R) agents 
in a particular population and calculate the rate of change in 
each fraction by solving the system of differential equations 
[6, 7]. These models have serious drawbacks in the fact that 
they neglect the local characteristics of the distribution 
process and do not include the variable susceptibility of 
individuals. In particular, they cannot properly model 
individual contact processes, the consequences of individual 
behavior, the spatial aspects of the spread of the epidemic, and 
the consequences of mixing patterns of individuals. 

One of the main problems of the epidemic process in 
population dynamics systems is the stochastic nature of its 
behavior [8]. In addition, there are added modifications of 
states: mask mode, gatherings in public places, observance of 
social distance [9-10]. But the mask regime, vaccination and 
self-isolation are not considered in the complex. 

The cellular automata method allows to overcome the 
shortcomings of the approach using differential equations for 
modeling infectious diseases, especially with regard to 
precautions and treatment. Of particular interest are cellular 
automata that simulate the movement of individuals. 

The paper [11] examined the modeling of various 
infectious conditions of the COVID-19 pandemic using 
cellular automata, in particular, it was considered the 
vaccination regime and the possibility of a complete 
lockdown. Investigations of such scenarios show that strict 
social isolation is crucial to controlling the pandemic. 

In the works [12], the cellular automata method is used to 
simulate the influenza epidemic COVID-19. Restrictions are 
imposed in the form of vaccination of susceptible groups of 
the population and quarantine restrictions; individual mobility 
is taken into account, but the full range of protection scenarios 
is not considered. 

Therefore, it can be argued that in this situation the most 
adequate models are obtained when using cellular automata. 
An important aspect of the cellular automata method is the use 
of localization. Due to the use of this approach, it will be 
possible to model with more different restrictions. 
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III. MATHEMATICAL APPARATUS  

Models in which society is divided into groups or classes 
are called chamber models and are widely used in 
epidemiology. According to the classic SIR model, there is a 
set of agents that move and thereby imitate the settlement. The 
population in this model is divided into three groups 
depending on the status: S (susceptible) – healthy and 
susceptible to the disease, I (infected) – infected, which can 
infect others, R (recovered) – recovered or not susceptible. In 
this problem, agent go from phase to phase gradually S → I 
→ R.  

To model dynamic systems with an epidemic nature, it is 
necessary to initialize the input data of the modeling 
environment and initialize agents. We will consider the 
following parameters: 

Environmental of modeling: 

• box with a given size (𝑆) 

• number of agents (𝑁) 

• modeling duration (𝑡) 

• infection threshold (𝑝) 

• number of infected agents initially (n_inf) 

• initial position of infected and uninfected agents 

(𝐿 = 𝑙𝑖=1,𝑁𝑠𝑖𝑚
(𝑥,  𝑦)) 

A tuple of the agent: 

• agent position (𝑥,  𝑦) 

• size of the agent (𝑠) 

• speed of movement (𝑣) 

• the direction of movement (𝑘) 

• the radius of infection (𝑟) 

• the agent is infected (inf ) 

• the agent is vaccinated (𝑣𝑎𝑐) 

• agent wears a mask (𝑚𝑎𝑠𝑘) 

• the agent on self-isolation in case of illness (𝑖𝑠𝑜𝑙) 

One of the most important aspects of modeling is 
comparing computer time and linear dimensions with relevant 
real data. In particular, if the population of the city is 𝑃𝑠 and 
its area is – 𝑆𝑠 then on average persons 𝑁𝑠𝑖𝑚 of this settlement 

live on the area [13]: 𝑆𝑠𝑖𝑚 =
𝑁𝑠𝑖𝑚

𝑃𝑠
𝑆𝑠. 

If in the simulation model this area is represented as a 
square with a side 𝐿 = 1 , then it will correspond to the true 

size: 𝐿𝑠𝑖𝑚 = √𝑆𝑠𝑖𝑚. 

Then the distance required for infection will be defined as 

Δ = 𝑑𝑟𝑒𝑎𝑙
𝐿

𝐿𝑠𝑖𝑚
, where 𝑑𝑟𝑒𝑎𝑙  – real distance in meters, 

necessary for infecting people. This value is known in medical 
directories and depends on the type of virus that is simulated. 

Assuming that is the average speed of a person 𝑣𝑟𝑒𝑎𝑙 =

4 
𝑘𝑚

ℎ
, then in the simulation model it will correspond to the 

speed: 𝑣 = 𝑣𝑟𝑒𝑎𝑙
𝐿

𝐿𝑠𝑖𝑚
. 

The next step is to determine the duration of one iteration. 
It should be of such kind: during one iteration a person cannot 
overcome a distance greater than 𝑑 , since in this case the 
agents moving towards each other will slip through each other 
without interaction. Not enough time – significantly slows 

down the calculation Δ𝑡 <
𝑑

𝑣
. This value allows us to 

𝑣𝑇compare the true duration of the disease: 𝑇𝑖𝑙 =
𝑇𝑟𝑒𝑎𝑙

Δ𝑡
, where 

𝑇𝑟𝑒𝑎𝑙 – the real average duration of the disease. 

Using a random number generator with a normal 
distribution, the positions of agents (and their initial speeds are 
generated: 𝐿 = 𝑙𝑖=1,𝑁𝑠𝑖𝑚

(𝑥,  𝑦,  𝑣,  𝑘,  𝑆𝑠𝑖𝑟 ,  𝑟) , where 𝑥,  𝑦  – 

agent coordinates, 𝑣 - speed of movement, 𝑘  – the direction 
of movement, 𝑆𝑠𝑖𝑟 – agent status, 𝑟  – the number of people 
infected with this agent (𝑟 = 0  at the initialization stage). 

All agents in the first step of iteration, as a rule, have the S 
status. One random agent receives status I. Depending on the 
type of disease, some agents may have R status on the first 
iteration, which is interpreted as immune sensitive. The next 
step is to imitate the movement of people. To do this on each 
iteration, the agent moves to 𝑠 = (𝑥 + 𝑣Δ𝑡,  𝑦 + 𝑣Δ𝑡). After 
calculating the position of the agents at the next step of the 
iteration, the following situations are possible: 

1. The agent is nearby or has crossed the simulation 
boundary. In this case, you can either simulate a 
mirror reflection (change the sign of one of the 
components of the velocity to the opposite direction), 
or aim the agent in the opposite direction (change the 
signs of both speed components to opposite). 

2. The uninfected agent fell into the danger zone of the 
infected agent. In this case, the following two 
situations are possible: 

• no actions are taken against the agent if it has the R 
status; 

• if the agent has the S status, the value z is determined 
by the random number generator and taken from the 
interval 𝑧 = [0,1]. If 𝑧 < 𝑝 , the person is marked as 
infected and receives status I, and the value of r of the 
infected agent increases by 1. The future time of 

disease of a particular agent is calculated: 𝑇𝑖𝑙
𝑖 = 𝑇𝑖𝑙 +

2𝑡𝑖𝑙(𝑧𝑖 − 0.5), where 𝑧𝑖  – is a random number within 
[0,1], 𝑡𝑖𝑙  – the possible range of disease duration. 

3. People collided or approached a dangerous distance 
from each other. In this case, it seems most logical to 
ignore such a situation and allow the passage of a 
person through a person. At the same time, you can 
simulate an "elastic collision", when the velocity 
vectors change the signs to the opposite. 

4. The simulation continues until all infected agents 
recover or die. If the status of an agent is I and the 

time of the disease is 𝑡𝑖𝑙
𝑖 ≥ 𝑇𝑖𝑙

𝑖 , then is determined a 
random number: 𝑃𝑑 = [0,1]. If 𝑃𝑑 > 𝐷 , the agent 
recovers, that is, changes the state to R, otherwise it 
dies and is removed from the calculations. 

IV. SIR MODEL MODIFICATIONS 

Modification of the model on the basis of mobile cellular 
machines provides for: 



a) Changing the rules of interaction of agents 

(infection, mask mode, etc.); 

b) Modification of agents' behavior (isolation, 

quarantine, public places with close contact, conscious 

observance of a safe distance, etc.); 

c) Change in the condition of pathogens depending on 

the time (course of the disease, incubation period, etc.). 

1. Isolation modeling 

Isolation involves creating conditions under which an ill 
agent cannot infect others. This can be implemented either 
through additional status and verification at each step of the 
iteration, or by creating another simulation zone in which all 
ill agents will be transferred, and allow them to move and 
interact according to classical rules. 

It is necessary to enter an additional parameter 
𝑇𝑖𝑛𝑐(incubation period) to take into account these factors. The 

value of this parameter 𝑇𝑟𝑒𝑎𝑙
𝑖𝑛𝑐  is determined by taking real and 

well-known time for various diseases 𝑇𝑟𝑒𝑎𝑙 =
𝑇𝑟𝑒𝑎𝑙
𝑖𝑛𝑐

Δ𝑡
. 

To take into account the asymptomatic course of the 
disease during initialization, it is enough for each agent to 
assign an additional binary status 𝐼𝑠 , which will determine 
how this agent will experience the disease in case of infection 

(𝑇𝑟𝑢𝑒 — asymptomatic, 𝐹𝑎𝑙𝑠𝑒 — with symptoms). This 
status will be determined depending on the likelihood of 
asymptomatic disease 𝑝𝑠𝑦𝑚 , which is a known medical 

quantity for various diseases: 

𝐼𝑠 = ├𝑇𝑟𝑢𝑒, 𝑧<𝑝𝑠𝑦𝑚

𝐹𝑎𝑙𝑠𝑒, 𝑧≥𝑝𝑠𝑦𝑚
 

If 𝐼𝑠 = 𝑇𝑟𝑢𝑒 , the agent will not be selected in case of 
infection. Another important value is the number of infected 
agents 𝐼𝑚𝑎𝑥 at which isolation begins. If the total number of 
infected agents is less than 𝐼𝑚𝑎𝑥, the isolation process does not 
begin. 

1. Mask regime modeling 

To take into account the mask mode parameter during 
modeling, we will reduce the risk of infection of the agent 
using a constant 𝑄𝑚𝑎𝑠𝑘 = 0.6 . This constant will be 
multiplied by p and the probability of infection will be 
calculated as 𝑧 < 𝑝𝑄𝑚𝑎𝑠𝑘 , where 𝑧 = [0,1]  is a random 
variable. 

2. Vaccination modeling 

To take into account the vaccination parameter during 
modeling, we will reduce the risk of infection of the agent 
using a constant 𝑄𝑣𝑎𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0.4 . This constant will be 
multiplied by p and the probability of infection will be 
calculated as 𝑧 < 𝑝𝑄𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , where 𝑧 = [0,1] is a random 
variable. 

V. MODEL FORMALIZATION 

The process of modeling in this model will be modeled 
until there is no infected agent left. When analyzing different 
scenarios, it is necessary to run an imitation model not from 
the first iteration, but from a specific fixed point of time. 
Therefore, the generation of multi-agent systems in an object- 
oriented programming language allows at any time during 
modeling to store all objects on the hard disk and use them as 
initial values in further analysis of various situations by the 
methods of model ensembles. 

The output of the model is the dynamics of such indicators 
as the total number of infected, those who recovered and dead 
agents. Such statistics are kept in general throughout the 
model. 

An important indicator of the dynamics of the epidemic is 
the basic 𝑅0  and effective reproductive number 𝑅 . The 
baseline number of reproductions 𝑅0 is used to measure the 
potential for transmission of the disease. This is the average 
number of secondary infections caused by a typical case of 
infection in a population where everyone is susceptible. In 
order for an epidemic to occur in a susceptible population, 
there must be 𝑅0 > 1, so the number of cases increases. This 
is measured by an effective reproduction factor 𝑅  — the 
average number of secondary cases for an infectious case in a 
population consisting of both sensitive and insensitive hosts. 
If 𝑅 > 1 , the number of cases will increase, for example, at 
the beginning of the epidemic. Where 𝑅 = 1 , the disease is 
endemic, and with 𝑅 < 1 , there will be a decrease in the 
number of cases. 

The effective number of reproductions can be estimated by 
the product of the main reproductive number and the 
proportion of the susceptible population of the host 𝑥 . 

VI. RESULTS OF THE MODELING 

To analyze the spread of COVID-19 and to study in detail 
all aspects, various modeling options were carried out and the 
relevant factors were taken into consideration. 

Environmental of modeling: 

S =810, N=100, t=number of infected agents > 0, p=0.5, 
n_inf=5, L=list of agents. 

A tuple of the agent: 

coordinates of the agent - (𝑥,  𝑦) , 𝑠 = 15 , 𝑣 = 1 , 𝑟 =
60 , 𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,360)) ,  𝑖𝑛𝑓 = 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 , 𝑣𝑎𝑐 =
𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 , 𝑚𝑎𝑠𝑘 = 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 , 𝑖𝑠𝑜𝑙 = 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 . 

1. Scenarios of the modeling 

Simulation 1. Only the mask mode is taken into account. 

Simulation 2. Only the vaccination regimen is taken into 
account. 

Simulation 3. A combination of limiting factors is 
considered - the mask mode and the vaccination regimen. 

Simulation 4. A combination of limiting factors is 
considered - the mask mode and the self-isolation in case of 
illness. 

Simulation 5. Self-isolation in case of illness the 
vaccination regimen is considered. 

Simulation 6 (main). People move freely around the city. 
Limiting factors such as mask regime, self-isolation and 
vaccination regimen are taken into account. The possibility of 
self-isolation for infected people is considered.  

2. Analyses of the result 



 
 

Fig. 1. Dynamics of the number of infected agents in different scenarios 

 

The results of modeling the dynamics of the number of 
infected agents in different scenarios are presented in Fig. 1. 

Scenario (simulation 1), where only the mask mode is 
considered has the highest incidence peak among all presented 
simulation scenarios. In this scenario, the number of infected 
agents increases sharply, critically burdening the medical 
system. This means that there is an epidemic of overcrowding. 
In this case, the results are unfavorable, the introduction of 
only the mask regime is insufficient. 

Taking into account only the vaccination regimen 
(Simulation 2), the number of infected agents also has one of 
the largest peaks. We observe that the number of infected 
agents is growing sharply and there is a potential burden on 
the medical system. Then there is a decrease in the number of 
infected agents due to the recovery of some agents and their 
acquisition of immunity as a result of vaccination. Vaccination 
without other restrictions is ineffective. 

In the following case (Simulation 3) the scenario in which 
the combination of a mask mode and vaccination is 
considered. The peak number of infected agents is also one of 
the largest. 

Consider the scenario of self-isolation in case of illness 
and the mask mode (Simulation 4). In this case, we obtain that 
there is no large peak in the number of infected agents, and the 
disease progresses more smoothly. This combination of 
restrictions has reduced the burden on the medical system and 
avoided overcrowding. 

In the case (Simulation 5), self-isolation regimens and 
vaccination are considered. From the graph, we can conclude 
that there is no rapid peak in the number of infected agents, as 
in the first three scenarios simulations and the development of 
the disease is smoother at the beginning of its spread. This 
combination of restrictions has reduced the burden on the 
medical system and is more favorable for the region. 

The best situation is in the main scenario (Simulation 6). 
Development of the disease is smoother. The peak of the 
epidemic is slightly shifted in time compared to the worst- 
case scenarios. In the basic simulation scenario, the number of 
iterations required to complete the application simulation is 

greater than in other simulation modes. This means that the 
epidemic process stretches over time. The results of this 
modeling allow us to conclude that the introduction of 
vaccination, self-isolation and mask regime in the complex is 
one of the key means of controlling the pandemic. 

 
 

Fig. 2. Dynamics of the number of infected agents of the main model in 

different simulations 

In fig. 2 shows 5 different simulations of the dynamics of 
the number of infected agents in the main model to 
demonstrate its stability. The x-axis shows the number of 
iterations of the simulation, and the y-axis shows the number 
of infected agents. It is observed that due to a combination of 
limiting factors in the main model it was possible to reduce 
the peak number of infected agents from 80-100 people in the 
first scenario to 67 people in the worst case. 

Consider analysis of the stability of the simulation of the 
number of infected agents of the main model depending on the 
number of iterations. The maximum peak value of infected 
agents is 67 for 16 iterations, and the minimum peak value is 
59 for 13 iterations in 5 simulation series. The error of the 
number of infected in the new simulation is +/- 4 agents 
relative to the average peak value of 62.4. Note also that the 
average peak value of infected 62.4 agrees well with the 
maximum peak of infected agents 60 by 13 iterations in the 
comparative scheme in Fig. 2. 

VII. CONCLUSIONS 

In this paper the multi-agent model of the dynamics of the 
spread of epidemic processes was improved. The model is 
based on the concept of the epidemic process: the presence of 
a source of infection, transmission mechanism and susceptible 
organism to the disease. We use a generalized mathematical 
SIR model and modeling of cellular automata to study the 
dynamics of infectious diseases and apply it in the context of 
the spread of COVID-19. 

The obtained results are analyzed about the optimal 
combination of quarantine restrictions to reduce the risk of 
reaching a rapid peak in the region. The simulation results 
revealed that disease self-isolation regimens are effective 
measures to combat the spread of infectious diseases. The 
application of a set of measures and quarantine restrictions 
avoids a rapid increase in the course of the disease and 
strongly affects the position and peak size of infected agents. 

The stability of the model depending on different 
simulations is proved, which allows us to use it in further 



researches. The simulation model developed in the work 
allows the implementation of various strategies to combat the 
spread of the disease and has the ability to adapt easily expand 
with new factors. 
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