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Abstract. Boundary value problems for nonlinear integro-differential equations of the
neutral type are investigated. A scheme for approximating the boundary value problem
solution using cubic splines of defect two is proposed and substantiated. A model example
illustrating the proposed approximation scheme is considered.
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Aproximarea solut, iilor problemelor cu valori la limită
pentru ecuat, iile integro-diferent, iale de tip neutru folosind
metoda funct, iei spline

Rezumat. În lucrare sunt cercetate probleme cu valori la limită pentru ecuat,iile integro-
diferent,iale neliniare de tip neutru. Este propusă s, i fundamentată o schemă de aproximare
a solut,iei problemei cu valori la limită folosind spline cubice ale defectului doi. Se
consideră un exemplu model care ilustrează schema de aproximare propusă.
Cuvinte cheie: problemă cu valoarea la limită, tip neutru, spline cubice

In mathematical modeling of physical and technical processes, the evolution of which
depends on prehistory, we arrive at differential equations with a delay. With the help of
such equations it was possible to identify and describe new effects and phenomena in
physics, biology, technology [1].

Boundary value problems for integro-differential equations with a deviating argument
are mathematical models of various applied processes in biology, immunology, and
medicine. In particular, Volterra integro-differential equations with a delay play an
important role in modeling many real phenomena in ecology [2]. An important task in
their study is to establish convenient conditions that guarantee the existence of solutions
of such problems [2, 3]. Finding solutions to boundary value problems with a time delay
in analytical form is possible only in the simplest cases, so the real task is to develop
efficient methods for finding their approximate solutions [4]. The application of the spline
function method to the approximation of boundary value problems for integro-differential
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equations has been studied in [5]. Approximation schemes for differential-difference
equations using systems of ordinary differential equations have been considered in [6, 7].
The aim of this work is to extend the approximation schemes using cubic splines of defect
two for boundary value problems for integro-differential equations with many delays [8].

1. Problem statement. Solution existence

Let us denote

[𝑦(𝑥)] =
(
𝑦
(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦

(
𝑥 − 𝜏𝑛 (𝑥)

) )
,

[𝑦(𝑥)]1 =

(
𝑦′

(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦′

(
𝑥 − 𝜏𝑛 (𝑥)

) )
, (1)

[𝑦(𝑥)]2 =

(
𝑦′′

(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦′′

(
𝑥 − 𝜏𝑛 (𝑥)

) )
.

Consider a boundary value problem

𝑦′′(𝑥) = 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
+ (2)

+
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠, 𝑥 ∈ [𝑎; 𝑏],

𝑦 (𝑝) (𝑥) = 𝜑 (𝑝) (𝑥) , 𝑝 = 0, 1, 2, 𝑥 ∈ [𝑎∗; 𝑎] , 𝑦 (𝑏) = 𝛾, (3)

where 𝜏0 (𝑥) = 0, 𝜏𝑖 (𝑥) , 𝑖 = 1, 𝑛 are continuous nonnegative functions defined on [𝑎, 𝑏],
𝜑 (𝑥) is a twice continuously differentiable function on [𝑎∗; 𝑎], 𝛾 ∈ 𝑅,

𝑎∗ = min
0<𝑖≤𝑛

{
inf

𝑥∈[𝑎;𝑏]
(𝑥 − 𝜏𝑖 (𝑥))

}
.

Let us introduce the sets of points defined by the delays 𝜏1 (𝑥) , . . . , 𝜏𝑛 (𝑥):

𝐸𝑖1 =
{
𝑥 𝑗 ∈ [𝑎, 𝑏] : 𝑥 𝑗 − 𝜏𝑖

(
𝑥 𝑗

)
= 𝑎, 𝑗 = 1, 2, . . .

}
,

𝐸𝑖2 =
{
𝑥 𝑗 ∈ [𝑎, 𝑏] : 𝑥0 = 𝑎, 𝑥 𝑗+1 − 𝜏𝑖

(
𝑥 𝑗+1

)
= 𝑥 𝑗 , 𝑗 = 0, 1, 2, . . .

}
,

𝐸2 =

𝑛⋃
𝑖=1

(
𝐸𝑖1 ∪ 𝐸𝑖2

)
.

Assume that the delays 𝜏𝑖 (𝑥) , 𝑖 = 1, 𝑛 are such functions that the sets 𝐸𝑖1, 𝐸𝑖2, 𝑖 = 1, 𝑛
are finite. We will number the points of the set 𝐸2 in ascending order.
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Let us introduce the notation:

𝑃 = sup
{��� 𝑓 (𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

) ��� + �����
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠

����� :���𝑦 (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃1,
���𝑦′ (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃2,���𝑦′′ (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃3, 𝑖 = 0, 𝑛, 𝑥, 𝑠 ∈ [𝑎; 𝑏]

}
,

𝐽 = [𝑎∗; 𝑎] , 𝐼 = [𝑎, 𝑏] ,

𝐼1 = [𝑎, 𝑥1] , 𝐼2 = [𝑥1, 𝑥2] , . . . , 𝐼𝑘 = [𝑥𝑘−1, 𝑥𝑘] , 𝐼𝑘+1 = [𝑥𝑘 , 𝑏] ,

𝐵2
(
𝐽 ∪ 𝐼

)
=

{
𝑦 (𝑥) : 𝑦 (𝑥) ∈

(
𝐶 (𝐽 ∪ 𝐼) ∩

(
𝐶1(𝐽) ∪𝐶1(𝐼)

)
∩

∩
(𝑘+1⋃
𝑗=1
𝐶2 (

𝐼 𝑗
) ))
, |𝑦(𝑥) | ≤ 𝑃1, |𝑦′(𝑥) | ≤ 𝑃2, |𝑦′′(𝑥) | ≤ 𝑃3

}
,

where 𝑃1, 𝑃2, 𝑃3 are positive constants.
A function 𝑦 = 𝑦 (𝑥) will be considered a solution of the boundary value problem

(2)-(3) if it satisfies the equation (2) on [𝑎; 𝑏] (with the possible exception of the points
of the set 𝐸2) and the boundary conditions (3). We will find a solution of the problem
(2)-(3) which belongs to the space 𝐵2(𝐽 ∪ 𝐼).

The definition of the space 𝐵2(𝐽∪ 𝐼) implies that the solution of (2)-(3) is continuously
differentiable for any 𝑥 ∈ [𝑎, 𝑏] where 𝑦′ (𝑎) is the right derivative, and at points of 𝐸2

there exist finite one-sided second derivatives of the solution which may not coincide.
Let us introduce a norm in the space 𝐵2(𝐽 ∪ 𝐼):

∥𝑦∥𝐵2 = max
{

8
(𝑏 − 𝑎)2 max

𝑥∈𝐽∪𝐼
|𝑦(𝑥) |, 2

𝑏 − 𝑎 max
(
max
𝑥∈𝐽

|𝑦′(𝑥) |, max
𝑥∈𝐼

|𝑦′(𝑥) |
)
,

max
(
max
𝑥∈𝐽

|𝑦′′(𝑥) |, max
𝑥∈𝐼1

|𝑦′′(𝑥) |, . . . , max
𝑥∈𝐼𝑘+1

|𝑦′′(𝑥) |
)}
.

The space 𝐵2(𝐽 ∪ 𝐼) with this norm is a Banach space.
The boundary value problem (2)-(3) is equivalent to the integral equation [9]

𝑦 (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+

𝑏∫
𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
×

×𝐺 (𝑥, 𝑠) 𝑑𝑠 + 𝑙 (𝑥) , 𝑥 ∈ 𝐽 ∪ 𝐼, (4)
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𝐺 (𝑥, 𝑠) =
{
𝐺 (𝑥, 𝑠) , 𝑥, 𝑠 ∈ 𝐼,

0, otherwise,

𝑙 (𝑥) =
{

𝜑 (𝑥) , 𝑥 ∈ 𝐽,
𝛾−𝜑 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎) + 𝜑 (𝑎) , 𝑥 ∈ 𝐼,

where 𝐺 (𝑥, 𝑠) is the Green’s function of the boundary value problem

𝑦′′ (𝑥) = 0, 𝑥 ∈ 𝐼, 𝑦 (𝑎) = 𝑦 (𝑏) = 0.

We define the operator 𝑇 in the space 𝐵2(𝐽 ∪ 𝐼) as follows

(𝑇𝑦) (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+

+
𝑏∫

𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
𝐺 (𝑥, 𝑠) 𝑑𝑠 + 𝑙 (𝑥) , 𝑥 ∈ 𝐽 ∪ 𝐼 .

Hence

(𝑇𝑦)′ (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+ (5)

+
𝑏∫

𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
𝐺

′

𝑥 (𝑥, 𝑠) 𝑑𝑠 +
𝛾 − 𝜑 (𝑎)
𝑏 − 𝑎 ,

𝑥 ∈ 𝐽 ∪ 𝐼 .

(𝑇𝑦)′′ (𝑥) = 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
+ (6)

+
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠, 𝑥 ∈ 𝐽 ∪ 𝐼 .

Let the function 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
be continuous in 𝐺 = [𝑎; 𝑏] × 𝐺𝑛+1

1 ×
𝐺𝑛+1

2 × 𝐺𝑛+1
3 and let 𝑔

(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
be continuous in 𝑄 = [𝑎; 𝑏] × 𝐺

where 𝐺1 =
{
𝑢 ∈ 𝑅 : |𝑢 | < 𝑃1

}
, 𝐺2 =

{
𝑣 ∈ 𝑅 : |𝑣 | ≤ 𝑃2

}
, 𝐺3 =

{
𝑤 ∈ 𝑅 : |𝑤 | ≤ 𝑃3

}
,

𝑃1, 𝑃2, 𝑃3 are positive constants that are included in the definition of the space 𝐵2(𝐽 ∪ 𝐼).
The following theorem holds.

Theorem 1.1. Let the conditions be met:

1) max
{
max
𝑥∈𝐽

|𝜑 (𝑥) | , (𝑏−𝑎)2

8 𝑃 + max
{
|𝜑 (𝑎) | , |𝛾 |

}}
≤ 𝑃1,

2) max
{
max
𝑥∈𝐽

|𝜑′ (𝑥) | , 𝑏−𝑎
2 𝑃 +

��� 𝛾−𝜑 (𝑎)
𝑏−𝑎

���} ≤ 𝑃2,
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3) max
{
max
𝑥∈𝐽

|𝜑′′ (𝑥) | , 𝑃
}
≤ 𝑃3,

4) the functions 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
and 𝑔

(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
satisfy the Lipschitz condition in 𝐺 on the variables [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2 with
constants 𝐿1

𝑖
and 𝐿2

𝑖
(𝑖 = 0, 3𝑛 + 2), respectively,

5) (𝑏−𝑎)2

8

𝑛∑
𝑖=0

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
+ 𝑏−𝑎

2

2𝑛+1∑
𝑖=𝑛+1

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
+

3𝑛+2∑
𝑖=2𝑛+2

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
< 1.

Then there exists a unique solution of the problem (2)-(3) in the space 𝐵2(𝐽 ∪ 𝐼).

The proof is carried out similarly to Theorem 1 [5] using the contraction mapping
principle.

2. Computational scheme. Iterative process convergence

Choose an irregular grid Δ = {𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑚 = 𝑏} on the interval [𝑎; 𝑏] such
that 𝐸2 ⊂ Δ. Let us denote by 𝑆(𝑥, 𝑦) an interpolation cubic spline of defect two on Δ for
the function 𝑦 (𝑥). 𝑆(𝑥, 𝑦) belongs to the space 𝐵2(𝐽 ∪ 𝐼).

We introduce the notation ℎ 𝑗 = 𝑥 𝑗 − 𝑥 𝑗−1, 𝑗 = 1, . . . , 𝑛, 𝑀+
𝑗
= 𝑆′′(𝑥 𝑗 + 0, 𝑦), 𝑗 =

0, . . . , 𝑛−1, 𝑀−
𝑗
= 𝑆′′(𝑥 𝑗 −0, 𝑦) 𝑗 = 1, . . . , 𝑛. It is easy to obtain an image for the spline

𝑆(𝑥, 𝑦):

𝑆(𝑥, 𝑦) = 𝑀+
𝑗−1

(𝑥 𝑗 − 𝑥)3

6ℎ 𝑗

+ 𝑀−
𝑗

(𝑥 − 𝑥 𝑗−1)3

6ℎ 𝑗

+ (7)

+
(
𝑦 𝑗−1 −

𝑀+
𝑗−1ℎ

2
𝑗

6

)
𝑥 𝑗 − 𝑥
ℎ 𝑗

+
(
𝑦 𝑗 −

𝑀−
𝑗
ℎ2
𝑗

6

)
𝑥 − 𝑥 𝑗−1

ℎ 𝑗

,

𝑥 ∈ [𝑥 𝑗−1; 𝑥 𝑗], 𝑗 = 1, 2, . . . , 𝑚.

Taking into account the form of the spline (7) and the continuity of its first derivatives
in the internal nodes of the gridΔwe obtain a system of linear algebraic equations satisfied
by the values 𝑀+

𝑗−1 and 𝑀−
𝑗
( 𝑗 = 1, 2, . . . , 𝑚):

ℎ 𝑗+1𝑦 𝑗−1 − (ℎ 𝑗 + ℎ 𝑗+1)𝑦 𝑗 + ℎ 𝑗 𝑦 𝑗+1 =
ℎ 𝑗ℎ 𝑗+1

6 ×
×

(
ℎ 𝑗𝑀

+
𝑗−1 + 2ℎ 𝑗𝑀

−
𝑗
+ 2ℎ 𝑗+1𝑀

+
𝑗
+ ℎ 𝑗+1𝑀

−
𝑗+1

)
,

𝑗 = 1, 𝑚 − 1.

(8)

We will find a solution of the boundary value problem (2)-(3) in the form of a sequence
of cubic splines with defect 2 according to the following scheme:

A) Choose an initial cubic spline 𝑆
(
𝑥, 𝑦 (0)

)
=

𝛾−𝜑 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎) + 𝜑 (𝑎) which satisfies

the boundary conditions (3) at 𝑥 = 𝑎 and 𝑥 = 𝑏.
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B) Using the original equation (2) and the spline 𝑆
(
𝑥, 𝑦 (𝑘 )

)
, for 𝑘 = 0, 1, . . . find:

𝑀
+(𝑘+1)
𝑗

= 𝑓
(
𝑥 𝑗 , [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )], [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )]2

)
+

+
𝑏∫

𝑎

𝑔
(
𝑥 𝑗 , 𝑠, [𝑆(𝑠, 𝑦 (𝑘 ) )], [𝑆(𝑠 + 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑠 + 0, 𝑦 (𝑘 ) )]2

)
𝑑𝑠,

𝑗 = 0, 𝑚 − 1, (9)

𝑀
−(𝑘+1)
𝑗

= 𝑓
(
𝑥 𝑗 , [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )], [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )]2

)
,

+
𝑏∫

𝑎

𝑔
(
𝑥 𝑗 , 𝑠, [𝑆(𝑠, 𝑦 (𝑘 ) )], [𝑆(𝑠 − 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑠 − 0, 𝑦 (𝑘 ) )]2

)
𝑑𝑠,

𝑗 = 1, 𝑚. (10)

In the correlations (9), (10) substitute 𝑆 (𝑝)
(
𝑥, 𝑦 (𝑘 )

)
= 𝜑 (𝑝) (𝑥), 𝑝 = 0, 1, 2 for

𝑥 < 𝑎.
C) Calculate 𝑦 (𝑘+1)

𝑗
, 𝑗 = 0, 𝑚 by solving the system of equations (8).

D) Obtain the cubic spline 𝑆
(
𝑥, 𝑦 (𝑘+1) ) in the form (7) using the previously calculated

values 𝑦 (𝑘+1)
𝑗

, 𝑗 = 0, 𝑚, 𝑀+(𝑘+1)
𝑗

, 𝑗 = 0, 𝑚 − 1, 𝑀−(𝑘+1)
𝑗

, 𝑗 = 1, 𝑚. This spline
is the next iteration approximation.

Let us introduce the notation:

_1 =

𝑛∑︁
𝑖=0

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
, (11)

_2 =

2𝑛+1∑︁
𝑖=𝑛+1

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
, _3 =

3𝑛+2∑︁
𝑖=2𝑛+2

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
,

𝑢 =
𝐾5

8
(𝑏 − 𝑎)2 + 𝐻

2

8
, 𝑣 =

𝐾5

2
(𝑏 − 𝑎) + 2𝐻

3
,

` = 5
(
1 + 1

2
_1𝐻

2 + _2𝐻 + _3

)
.

Theorem 2.1. Assume that there exists a solution of the boundary value problem (2)-(3)
and it belongs to the space 𝐵2(𝐽 ∪ 𝐼). When the following inequality is true

\ = 𝑢_1 + 𝑣_2 + _3 < 1, (12)

12
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then there exists 𝐻∗ such that for all 0 < 𝐻 < 𝐻∗ the sequence of splines
{
𝑆

(
𝑥, 𝑦 (𝑘 )

)}
,

𝑘 = 0, 1, . . . converges uniformly on [𝑎; 𝑏] and the following correlations hold lim
𝑘→∞

𝑆 (𝑝) (𝑥, 𝑦 (𝑘 ) ) − 𝑦 (𝑝) (𝑥)
 ≤ 𝑅𝑝𝜔 (𝑦′′ (𝑥) , 𝐻) , 𝑝 = 0, 1, 2, (13)

𝑅0 = sup
𝐻≤𝐻∗

(
𝑢`

1 − \ + 5𝐻2

2

)
, 𝑅1 = sup

𝐻≤𝐻∗

( 𝑣`

1 − \ + 5𝐻
)
,

𝑅2 = sup
𝐻≤𝐻∗

( `

1 − \ + 5
)
,

𝜔 (𝑦′′ (𝑥) , 𝐻) = max
1≤𝑟≤𝑙+1

𝜔𝑟 (𝑦′′ (𝑥) , 𝐻) ,

where 𝜔𝑟 ( 𝑓 , 𝐻) is the continuity modulus of the function 𝑓 on the interval 𝛿𝑟 .

3. Example

Consider the boundary value problem for the neutral type equation:

𝑦′′ (𝑥) = 1
4
𝑦′′ (𝑥 − 1) + 1, 𝑥 ∈ [0; 2] ,

𝑦 (𝑥) = 𝑥, 𝑦′ (𝑥) = 1, 𝑦′′ (𝑥) = 0, 𝑥 ∈ [−1; 0] , 𝑦 (2) = 5
2
.

The precise solution 𝑦 (𝑥) was found using the method of steps. The approximate
solution 𝑦20

𝑆
(𝑥) and 𝑦40

𝑆
(𝑥), according to the iterative scheme proposed in the work, was

obtained on the 2nd iteration with a 20 and 40 segment grid respectively. Δ20
𝑆

and Δ40
𝑆

are
the absolute errors of the approximate solutions.

Table 1. Precise and approximate solutions

𝑥 𝑦(𝑥) 𝑦20
𝑆
(𝑥) Δ20

𝑆
𝑦40
𝑆
(𝑥) Δ40

𝑆

0.5 0.21875 0.21552 0.00323 0.21716 0.00159
1 0.6875 0.68146 0.00604 0.68443 0.00307

1.5 1.4375 1.43448 0.00302 1.43596 0.00154

When comparing the exact and approximate solutions, one can notice that the absolute
error at 20 segments does not exceed 0.006, and the relative error – 0.8%. But at 40
segments the absolute error does not exceed 0.003, and the relative error – 0.4%.

4. Conclusion

In this paper we investigate boundary value problems for nonlinear integro-differential
equations of neutral type. Sufficient conditions for the existence of solutions of such

13
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problems are established. The iterative schemes for finding approximate solutions of
these problems using cubic splines of defect two are constructed and substantiated, the
convergence of the iterative process is investigated. The use of the apparatus of spline
functions allows us to construct algorithms that are simple to implement and at the same
time suitable for solving a wide class of boundary value problems.
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