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INTERNAL AND STARTUP CONTROLS OF THE SOLUTIONS OF BOUNDARY-VALUE 
PROBLEM FOR PARABOLIC EQUATIONS WITH DEGENERATIONS 

І. М. Isariuk1,2  and  І. D. Pukal’s’kyi1 UDC 517.956 

For a second-order parabolic equation with degenerations, we construct the solution of the problem of 
optimal control for systems described by the first boundary-value problem with internal and startup con-
trols.  The coefficients of parabolic equation have power singularities of any order in time and space var-
iables on a certain set of points. 

Keywords: parabolic boundary-value problem, power singularities, Hölder spaces, Green function, op-
timal solution. 

In the contemporary applied investigations of partial differential equations, the researchers often encounter 
the problems with nonclassical conditions in the equations, boundary operators, and various singularities and 
degenerations.  These problems are of especial interest for parabolic equations and systems of equations, which 
describe the processes of diffusion of liquids and gases, pressure, the process of heat conduction, and other pro-
cesses running in bodies of complex configurations. 

Depending on the structure of medium, the processes of diffusion, heat conduction, and thermoelasticity are 
modeled by parabolic differential equations.  In this case, both equations and boundary conditions have nonclas-
sical restrictions and are characterized by various degenerations, random perturbations, and impulsive actions. 

Thus, the problem of establishing correct solvability of the boundary-value problems, finding the represen-
tations of their solutions, and determination of the properties of these solutions seems to be among the most im-
portant problems of mathematical physics, which is of high interest for the researchers.  

The comprehensive presentation of the theory of boundary-value problems for linear differential equations 
with degenerations can be found in the works by O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva 
[4], E. M. Landis [5], А. Friedman [11], S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei [12], H. Lange 
and H. Teismann [13], M. I. Matiichuk [6], B. Yo. Ptashnyk, V. S. Il’kiv, I. Ya. Kmit’, and V. M. Polishchuk 
[7], I. D. Pukal’s’kyi [8, 9], etc. 

In the present paper, we study a parabolic boundary-value problem for a linear differential equation with 
power singularities in coordinate planes of any order.  The obtained results are used for the investigation of the 
problems of optimal control with internal and startup controls.  As the quality criterion, we choose the sum of 
volume and surface integrals [9].  The present paper can be regarded as a continuation of our investigations of 
other boundary-value problems for parabolic equations with degenerations [1–3, 10].  

1.  Statement of the Problem and Main Restrictions 

In a domain  Q = [0,T )× D , we consider the problem of finding functions  (u, p,q)  on which the functional 
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I (p,q) = dt F1(t, x;u(t, x; p(t, x),q(x)), p(t, x))dx

D
∫

0

T

∫  

  
 
+ F2(x;u(T , x; p(T , x),q(x)),q(x))dx
D
∫ , (1) 

reaches its minimum in the class of functions   (p,q)∈V = {p ∈Cα (Q): p1(t, x) ≤ p ≤ p2 (t, x) ;  q(x)∈ 

 C
2+α (D), q1(x) ≤ q(x) ≤ q2 (x)}  for which the function  u(t, x; p(t, x),q(x))  is a solution of the boundary-value 

problem  

 
 
(Lu)(t, x) ≡ ∂t − Aij (t, x)∂xi

∂x j
i, j=1

n

∑ − Ai (t, x)∂xi
i=1

n

∑ − A0 (t, x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u   = f (t, x; p(t, x)) , (2) 

 u(0, x; p(0, x),q(x)) = ϕ (x;q(x)) , (3) 

 
 x→z∈∂D

lim [u(t, x; p(t, x),q(t ))− ψ(t, x)] = 0 . (4) 

The order of singularity of the differential expression  L   at an arbitrary point  P(t, x)∈Q   is characterized 
by the functions   s1(βi

(1) ,t)  and   s2(βi
(2) , xi ): 

 s1(βi
(1), t) =

t − t0
βi
(1)

, t − t0 ≤1,

1, t − t0 >1,

⎧

⎨
⎪⎪

⎩
⎪
⎪

        s2(βi
(2), xi ) =

xi
βi
(2 )

, 0 ≤ xi ≤1,

1, xi >1,

⎧

⎨
⎪

⎩
⎪

 

where   βi = (βi
(1) ,βi

(2)),    i ∈{1,…,n},   β
(ν) = (β1

(ν) ,…,βn
(ν) ) ,  βi

(ν)   are real numbers, and  βi
(ν) ∈(−∞,∞) ,  

 ν ∈{1,2}.    
By   ℓ ,  γ (1) ,  γ (2) ,  and q   we denote real numbers;   ℓ > 0 ,    [ℓ]  is the integer part of a number   ℓ ,  

   {ℓ} = ℓ − [ℓ],  γ (1) ≥ 0 ,  γ (2) ≥ 0 ,  q ≥ 0.  By   (x1
(1) ,…, xν

(1) ,…, xn
(1) )   we denote the coordinates of a point  x(1)  in 

the domain  D =   D ∪ ∂D ,  where  ∂D  is the boundary of domain  D   and by   (x1
(1) ,…, xν−1

(1) , xν
(2) , xν+1

(1) ,…, xn
(1) )  

we denote the coordinates of a point  x(2)  in the domain  D,   ν ∈{1,2}.  Here,  P1(t
(1) , x(1) ) ,  Hi (t

(1) , x(2) ),  and  
P2 (t (2) , x(2) )  are arbitrary points of the domain  Q ,    i ∈{1,…,n}.  

We now define the spaces of functions in which we study problem (2)–(4). 
Let   C

ℓ (γ;β;q;Q)   be the set of functions  u(t, x)  from the space  L1(Q) ,  (t, x)∈Q ,  with partial deriva-

tives at  t ≠ t0   of the form  ∂t
j ∂x

k u   (here,    2 j + k ≤ [ℓ],   k = k1 +…+ kn ,  
 
∂x
k = ∂x1

k1 ∂x2
k2…∂xn

kn )  for which the 

norm  

 
  
u;γ;β;q;Q ℓ = u;γ;β;q;Q [ℓ ] + u;γ;β;q;Q ℓ  

is finite.  Thus in particular, 
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 u;γ;β;q;Q 0 =
Q
sup u ≡ u;Q 0 , 

 
   
u;γ;β;q;Q [ℓ ] =

P∈Q
sup S(q + (2 j + k )γ ,P) s1(− kiβi

(1) ,t)
i=1

n

∏⎡

⎣
⎢

2 j+ k ≤[ℓ ]
∑  

  
 
× s2(− kiβi

(2) , xi ) ∂t
j ∂x

k u(P) ⎤
⎦⎥

, 

 
   
u;γ;β;q;Q ℓ =

(P1,Hi )⊂Q
sup xi

(1) − xi
(2) −{ℓ}

i=1

n

∑
2 j+ k =[ℓ ]
∑  

     × ∂t
j ∂x

k u(P1)− ∂t
j ∂x

k u(Hi ) S((ℓ + q)γ; !P)s1(−{ℓ}βi
(1) ,t (1)) 

  
   
× s2(−{ℓ}βi

(2) , !xi ) s2(− kmβm
(2) , !xm )s1(− kmβm

(1) ,t)
m=1

n

∏  

  
   
+

(P2 ,Hi )⊂Q
sup t (1) − t (2)

−{ℓ}/2
∂t
j ∂x

k u(P2 )− ∂t
j ∂x

k u(Hi )
i=1

n

∑
2 j+ k =[ℓ ]
∑  

  
   
× S((ℓ + q)γ; !P) s2(− kmβm

(2) , xm
(2))s1(− kmβm

(1) , !t )
m=1

n

∏ . 

Here, we denote 

 
 
S(γ;P) = s1(γ

(1) ,t )min
i

(s2 (γ
(2) , xi )), 

 
  
S(qγ; !P) = min

i
{S(qγ;P1),S(qγ;P2 ),S(qγ;Hi )} , 

   s1(q, !t ) = min{s1(q,t
(1) ), s1(q,t

(2) )}, 

 
  
s2 (q, !xi ) = min

i
{s2 (q, xi

(1) ), s2 (q, xi
(2) )} . 

We take   

 
 
µ j

(ν) = µ j1
(ν) + µ j2

(ν) +…+ µ jn
(ν),  µ ji

(ν) ≥ 0 ,   ν ∈{1,2},  µ j = (µ j
(1) ,µ j

(2) ) ,    j ∈{0,1,…,n}. 

We study problem (2)–(4) with the following conditions: 
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1°° .  For any vector   ξ = (ξ1,ξ2 ,…,ξn ) ,  the following inequality is true:  

 π1 ξ 2 ≤ Aij (t, x)s1(βi
(1),t )s1(β j

(1),t )s2 (βi
(2), xi )s2 (β j

(2), x j )ξiξ j
i, j=1

n

∑ ≤ π2 ξ 2 , 

where  π1   and  π2   are fixed positive constants, 

 s1(βi
(1) ,t )s1(β j

(1) ,t )s2 (βi
(2) , xi )s2 (β j

(2) , x j )Aij ∈Cα (γ;β;0;Q) ,  

 s1(µi
(1) ,t )s2 (µi

(2) , xi )Ai ∈Cα (γ;β;0;Q) , 

 s1(µ0
(1) ,t )ρ(µ0

(2) , x)A0 ∈Cα (γ;β;0;Q),      A0 ≤ K < ∞,       K = const, 

2°° .  f ∈Cα(γ;β;µ0 ;Q),   ϕ ∈C2+α( !γ; !β;0;D),   !γ = (0,γ (2)),   
!β = (0,β(2)),  ∂D ∈C2+α ,  ψ ∈ C2+α (γ;β;0;Q) ,  

γ (ν) = max max
i

(1+βi
(ν) ),max

i
(µi

(ν) −βi
(ν) ),

µ0
(ν)

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,   ν ∈{1,2},  and  ψ(0, x) = ϕ(x). 

3°° .  pν (t, x)∈Cα (Q) ,  qν (x)∈C
2+α (D) ,   ν ∈{1,2},  functions  F1(t, x;u(t, x; p;q), p),  F2 (x;u(T , x ; 

p;q),q)   as composite functions of the variables  (t, x)   and  x   belong to the spaces  Cα (Q)  and  C2+α (D) ,  
respectively.  Moreover, the functions  f (t, x; p(t, x)) ,  F1(t, x;u(t, x; p;q), p),  F2 (x;u(T , x; p;q),q),  and  
ϕ(x,q(x))  have Hölder derivatives of the second order with respect to arguments  u ,  p ,  and  q ,  which are 
continuous as composite functions of the variables  (t, x)   and  x . 

The following theorem is true: 

Theorem 1.  Suppose that conditions 1°°  and 2°°  are satisfied in the domain   Q = [0;T )× D ,  where  D  is a 
bounded domain from the set   R+

n .  Then there exists a unique solution of problem (2)–(4) from the space  
C2+α (γ;β;0;Q) ,  and the estimate 

 
  
u;γ;β;0;Q 2+α ≤ c( f ;γ;β;µ0 ;Q α + ϕ; !γ; !β;0;D

2+α
+ ψ;γ;β;0;Q 2+α )  (5) 

is true. 

2.  Estimation of the Solutions of Boundary-Value Problems with Smooth Coefficients 

For the investigation of problem (2)–(4), we first establish the correct solvability of a sequence of auxiliary 
boundary-value problems with smooth coefficients whose limit value gives the solution of problem (2)–(4). 

Let   

   Qm = Q ∩{(t, x)∈Q : s1(1,t ) ≥ m1
−1, s2 (1, xi )≥ m2

−1,m = (m1,m2 ),m1 > 1,m2 > 1},    i ∈{1,…,n},   
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be a sequence of domains that converges to  Q(0)   as  m1 →∞   and  m2 →∞ . 
In the domain  Q ,  we consider the problem of finding a function  um (t, x)  satisfying the equation  

 
 
(L1um )(t, x) = ∂t − aij (t, x)∂xi

∂x j
i, j=1

n

∑ − ai (t, x)∂xi
i=1

n

∑ − a0 (t, x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
um (t, x) 

  = fm (t, x, p),  (6) 

the initial condition 

 um (0, x) = ϕm (x,q), (7) 

and the boundary condition 

 
 x→z∈∂D

lim [um (t, x)− ψm (t, x)] = 0 . (8) 

Here, the coefficients  aij ,  ai ,  and  a0   and the functions  fm ,  ϕm ,  and  ψ1m   coincide, for  (t, x)∈Qm ,  with  
Aij ,  Ai ,  and  A0   and  f ,  ϕ,  and  ψ ,  respectively.  For  (t, x)∈Q \Qm ,  the coefficients  aij ,  ai ,  and  a0   and 
the functions  fm ,  ϕm ,  and  ψm   are continuous extensions of the coefficients  Aij ,  Ai ,  and  A0   and the func-
tions  f ,  ϕ ,  and  ψ   from the domain  Qm   into domain  Q \Qm   [9].  

We now estimate the solutions of the auxiliary boundary-value problems.  In problem (6)–(8), we pass from 
the function  um (t, x)  to a new function  vm (t, x)   given by the formula  

 um (t, x) = vm (t, x)e−λt , (9) 

where  λ   satisfies the inequality  λ < −A0 (t, x) . 
Then the function  vm (t, x)   is the solution of the boundary-value problem  

  ((L1 − λ)vm )(t, x) = fm (t, x, p)eλt , (10) 

 vm (0, x) = ϕm (x,q),
x→z∈∂D
lim [vm (t, x)− ψm (t, x)eλt ] = 0 . (11) 

We now formulate the maximum principle for problem (10), (11). 

Theorem 2.  Let  vm (t, x)   be the classical solution of problem (10), (11) in the domain  Q   and let condi-
tions 1° and 2° be satisfied.  Then the estimate 

 vm ≤ max fme
λt (−λ − a0 )

−1;Q
0
, ϕm ;D 0 , ψme

λt ;Q
0{ } (12) 

is true for  vm (t, x) . 
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This theorem is proved by using the same scheme as in the proof of Theorem 2.1 from [4, p. 22], i.e., for the 
function vm (t, x) , we analyze all possible positions of its positive maximum and negative minimum. 

Theorem 3.  Assume that conditions 1°°  and 2°°  are satisfied for problem (10), (11).  Then the estimate 

 
 
vm ;γ;β;0;Q 2+α ≤ C f ;γ;β;µ0 ;Q α + ϕ; !γ; !β;0;D

2+α
+ ψ;γ;β;0;Q 2+α( )   (13) 

is true for the solution of problem (10), (11).  

Proof.  In problem (10), (11), we perform the change of variables  

 vm (t, x) = ωm (t, x)e−λt + ψm (t, x). 

Then  ωm (t, x)  is the solution of the problem  

  ((L1 − λ)ωm )(t, x) = fm (t, x, p)eλt − ((L − λ)ψm )(t, x) ≡ Fm (t, x), 

 ωm (0, x) = ϕm (x,q)− ψm (0, x) ≡ Φm (x), (14) 

 
x→z∈∂D
lim ωm (t, x) = 0  

  in the domain  Q .  
By using the definition of the norm and the interpolation inequalities [8, 11], we find  

 ωm ;γ;β;0;Q 2+α ≤ (1+ εα ) ωm ;γ;β;0;Q 2+α + c(ε) ωm ;Q 0 , 

where  ε   is an arbitrary real number such that  ε ∈(0,1) .  Therefore, it suffices to estimate the seminorm  
ωm ;γ;β;0;Q 2+α .  It follows from the definition of seminorm that there exist points  P1,  P2 ,  and  Hi   of  Q   

for which one of the inequalities  

 
 
1
2 ωm ;γ;β;0;Q 2+α ≤ Ep (ωm ), p ∈{1,2}, 

is true.  We denote  

 R(γ;P) = d1(γ
(1) ,t )min

i
d2 (γ

(2) , xi ), 

 d(βi ;P) = d1(βi
(1) ,t )d2 (βi

(2) , xi ) , 

where 
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 d1(βi
(1), t) =

max
i

s1(βi
(1), t),m1

−βi
(1)( ), βi

(1) ≥ 0,

min
i

s1(βi
(1), t),m1

−βi
(1)( ), βi

(1) < 0,

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

 d2 (βi
(2), xi ) =

max
i

s2 (βi
(2), xi ),m2

−βi
(2 )( ), βi

(2) ≥ 0,

min
i

s2 (βi
(2), xi ),m2

−βi
(2 )( ), βi

(2) < 0.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

If   

 
 
t (1) − t (2) ≥ R(2γ; !P) τ

16 ≡ T1 ,   

and  τ   is an arbitrary number,  τ ∈(0,1) ,  then  

 E2 (ωm ) ≤ 2τ−α ωm ;γ;β;0;Q 2 . (15) 

If   

 xi
(1) − xi

(2) ≥ n−1R(γ ; !P)d1(−βi
(1), t (2) )d2 (−βi

(2), !xi )
τ
4 ≡ T2 ,   

then  

 E1(ωm ) ≤ 2τ−α ωm ;γ;β;0;Q 2 . (16) 

Applying the interpolation inequalities to (15) and (16), we find  

 Ep (ωm ) ≤ εα ωm ;γ;β;0;Q 2+α + c(ε) ωm ;Q 0 . (17) 

Suppose that   

 xi
(1) − xi

(2) ≤ T2   and  t (1) − t (2) ≤ T1.   

In addition, let   R(γ; !P) ≡ R(γ;P1) .  We assume that  x(1) − z ≥ 2T2n   or  xn
(1) − zn ≥ T2 ,  z ∈∂D . 

We now rewrite problem (14) in the form  

 
 
(L2ωm )(t, x) ≡ ∂t − aij (P1)∂xi

∂x ji, j=1

n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ωm  
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= [aij (P)− aij (P1)]∂xi ∂x j

i, j=1

n

∑ ωm + ai (P)∂xi
i=1

n

∑ ωm  

    + (a0 (P)+ λ)ωm + Fm (t, x) ≡ Fm
(1) (t, x,ωm )+ Fm (t, x), 

   (18) 
 ωm (0, x) = Φm (x),

x→z∈∂D
lim ωm (t, x) = 0 . 

Let  Vr
(1)   be a domain from  Q   and let    

  Vr
(1) = {(t, x)∈Q : xi − xi

(1) ≤ rT2 , i = 1,…,n,    t − t (1) ≤ r2T1}.   

In problem (18), we perform the change of variables   

 ωm (t, x) = Wm (t, y), yi = d1(βi
(1) ,t (1) )d2 (βi

(2) , xi
(1) )xi . 

As a result, we arrive at the following problem: 

 
 
(L3Wm )(t, y) ≡ ∂t − d1(βi

(1) ,t (1))d1(β j
(1) ,t (1))d2 (βi

(2) , xi
(1))d2 (β j

(2) , x j
(1))

i, j=1

n

∑
⎡

⎣
⎢
⎢

 

  
 
× aij (P1)∂yi ∂y j

⎤

⎦
⎥Wm = Fm

(1) (t, !y,Wm )+ Fm (t, !y), 

  Wm (0, y) = Φm ( !y), Wm Γ = 0 , 

where 

   !y = (d1(−β1
(1) ,t (1) )d2 (−β1

(2) , x1
(1) )y1,…,d1(−βn

(1) ,t (1) )d2 (−βn
(2) , xn

(1) )yn ). 

We denote  

 yi
(1) = d1(βi

(1) ,t (1) )d2 (βi
(2) , xi

(1) )xi
(1) , 

   Hr
(1) = {(t, y): yi − yi

(1) ≤ rn−1 T1 , i ∈{1,…,n}, t − t (1) ≤ rT1} 

and choose a three times differentiable function  η(t, y)  with the following properties:  

 η(t, y) =
1, (t, y)∈H1/4

(1) , 0 ≤ η(t, y) ≤1,

0, (t, y) /∈H3/4
(1) , ∂t

j∂y
kη ≤ CkjR(− (2 j + k )γ ;P1).

⎧

⎨
⎪

⎩
⎪
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Then the function  Vm (t, y) = η(t, y)Wm (t, y)   is a solution of the boundary-value problem  

 
 
(L3Vm )(t, y) = d1(βi

(1) ,t (1))d1(β j
(1) ,t (1))d2 (βi

(2) , xi
(1))d2 (β j

(2) , x j
(1))

i, j=1

n

∑  

  
 
× aij (P1)[∂yi η∂y j Wm + ∂y j η∂yi Wm ] 

  + wm d1(βi
(1) ,t (1) )d1(β j

(1) ,t (1) )d2 (βi
(2) , xi

(1) )
i, j=1

n

∑
⎡

⎣
⎢
⎢

 

  × d2 (β j
(2) , x j

(1) )aij (P1)∂yi
∂y j

η− ∂t η
⎤
⎦⎥
 

   + η(Fm
(1) + Fm ) ≡ Fm

(2) (t, !y,η,Wm )+ ηFm (t, !y), 

   (19) 
  Vm (0, y) = ηΦm ( !y), Vm Γ = 0 . 

By using Theorem 5.2 [4, p. 364], for the solution of problem (19), we obtain   

 E3(Vm ) ≡ d−α (N1,N2 ) ∂t
j ∂y

kVm (N1)− ∂t
j ∂y

kVm (N2 )  

  
 
≤ C Fm

(2) + ηFm Cα (H3/4
(1) )

+ ηΦm C2+α (H3/4
(1) )

⎛
⎝⎜

⎞
⎠⎟

, (20) 

where  (N1,N2 )⊂ H1/4
(1)   and  d(N1,N2 )   is the parabolic distance between the points  N1,  N2 ,  2 j + k = 2 . 

In view of the properties of the function  η(t, y),  we find  

 
 
Fm

(2) + ηFm Cα (H3/4
(1) )

≤ cR(−(2 +α)γ;P1) Wm ;γ;0;0;H 3/4
(1)

2(  

  + Wm ;H 3/4
(1)

0
+ Fm

(1);γ;0;2γ;H 3/4
(1)

α
+ Fm ;γ;0;2γ;H 3/4

(1)
α ), 

   (21) 

 
 
ηΦm C2+α (H3/4

(1) ) ≤ R(−(2 +α)γ;P1) λ0 Wm ;γ;0;0;H 3/4
(1)

2+α(  

  + c Wm ;H 3/4
(1)

0
+ c1 Φm ;γ;0;0;H 3/4

(1)
2+α ) . 

Substituting (21) in (20) and returning to the variables  (t, x) ,  we obtain  
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 Ep (ωm ) ≤ c1 Fm
(1);γ;β;2γ;V3/4

(1)
α
+ Φm ;γ;β;0;V3/4

(1)
2+α(  

  + Fm ;γ;β;2γ;V3/4
(1)

α
+ ωm ;γ;β;0;V3/4

(1)
2
+ ωm ;V3/4

(1)
0 ) 

  + λ0 ωm ;γ;β;0;V3/4
(1)

2+α
. 

By using the interpolation inequalities and estimates of the norm for each term in the expressions for  Fm
(1),  

Fm ,  and  Φm ,  we obtain  

 
 
Ep (ωm ) ≤ (λ0 + ε

α (n + 2)+ r2n2 ) ωm ;γ;β;0;H 3/4
(1)

2+α
 

  + c2 ωm ;H 3/4
(1)

0
+ c3 fm ;γ;β;µ0 ;Q α(  

  
 
+ ϕm ; !γ;

!β;0;D
2+α

+ ψ1m ;γ;β;0;Q 2+α ) . 

Consider the case where  x(1) − z ≤ 2T2n   and  xn
(1) − zn ≤ T2 ,  z ∈∂D .  Let  K (P)   be a ball of radius  R0 ,  

R0 ≥ 4(T2n +T1)   centered at a point  P ∈Γ   and containing the points  P1,  P2 ,  and  Hi .  By using the re-
strictions imposed on the smoothness of the boundary  ∂D ,  we can straighten the domain   ∂D ∩ K (P)   with the 
help of a one-to-one transformation  x = ψ 3(ξ)  [11, p. 126].  As a result of this transformation, the domain  

 D ∩ K (P)   turns into a domain  Π   whose points are such that  ξn ≥ 0 .  Assume that, under this transformation  
ωm (t, x),  P1,  P2 ,  and  Hi   pass into  ωm

(1) (t,ξ) ,  M1,  M 2 ,  and  Ni
(1) ,  respectively. 

We denote the coefficients of the differential expression  (L1 − λ)   in the domain  Π   by  pij (τ,ξ),  pi (τ,ξ) ,  

and  p0 (τ,ξ)   and the coefficients of the nonlocal condition by  qk
(1) (ξ).  Then  ωm

(1) (t,ξ)   is a solution of the 
problem  

 
 
(L4ωm

(1))(t,ξ) ≡ ∂t − pij (M1)∂ξi ∂ξ ji, j=1

n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ωm

(1)  

  
 
= [pij (t,ξ)− pij (M1)]∂ξi ∂ξ ji, j=1

n

∑ ωm
(1) + pi (t,ξ)∂ξii=1

n

∑ ωm
(1) 

    + (p0 (t,ξ)+ λ)ωm
(1) + Fm (t,ψ1(ξ)) 

  ≡ Fm
(2) (t,ξ,ωm

(1) )+ Fm (t,ψ 3(ξ)) , 

 ωm
(1) (0,ξ) = Φm (ψ1(ξ)) = Φm

(1) (ξ,ωm
(1) ), 

 ωm
(1)

ξn=0
= 0 . 
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By virtue of Theorem 6.1 [4, p. 368], we arrive at the inequality  

 
  
Eℓ (ωm

(1) ) ≤ (λ0 + ε
α (n + 2)+ r2n2 ) ωm

(1);γ;β;0;Π
2+α

 

  + c4 ωm
(1);Π

0
+ c5 fm ;γ;β;µ0 ;Q α(  

  
 
+ ϕm ; !γ;

!β;0;D
2+α

+ ψ1m ;γ;β;0;Q 2+α ) . 

Choosing sufficiently small  ε   and  r ,  we find   

 vm ;γ;β;0;Q 2+α ≤ c fm ;γ;β;µ0 ;Q α(  

  
 
+ ϕm ; !γ;

!β;0;D
2+α

+ ψ1m ;γ;β;0;Q 2+α ) . (22) 

In view of inequalities (22) and the estimates 

 fm ;γ;β;µ0 ;Q α ≤ c f ;γ;β;µ0 ;Q α , 

 
 
ϕm ; !γ;

!β;0;D
2+α

≤ c ϕ; !γ; !β;0;D
2+α

, 

 ψ1m ;γ;β;0;Q 2+α ≤ c ψ1;γ;β;0;Q 2+α , 

we arrive at inequality (13).  

Proof of Theorem 1.  By using the change of variables  vm = ume
λt   and inequality (13), we arrive at the 

following estimate for the solution of problem (6)–(8):  

 
 
um ;γ;β;0;Q 2+α ≤ c f ;γ;β;µ0 ;Q α + ϕ; !γ; !β;0;D

2+α
+ ψ;γ;β;0;Q 2+α( ), (23) 

whose right-hand side is independent of  m1  and  m2 .  In addition, the sequences  

  {Um
(0)} ≡ {um (P)}, 

 
 
{Um

(1)} ≡ {R(γ;P)d1(−βi
(1) ,t )d2 (−βi

(2) , xi )∂xi um (P)}, 

  {Um
(2)} ≡ {R(2γ;P)∂t um (P)}, 

 
 
{Um

(3)} ≡ {R(2γ;P)d1(−βi
(1) ,t )d1(−β j

(1) ,t )d2 (−βi
(2) , xi )d2 (−β j

(2) , x j )∂xi ∂x j um (P)}  
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are uniformly bounded and equicontinuous in the domain  Q .  According to the Arzela theorem, there exist sub-
sequences   {Um

(ν)}   uniformly convergent in  Q   to  U (ν),   ν ∈{0,1,2,3} .  Passing to the limit as  m1 →∞   and  
m2 →∞   in problem (6)–(8), we conclude that  u(t, x) =U (0)  is the unique solution of problem (2)–(4),  
u ∈Cα (γ;β;0;Q) . 

3.  Optimal Control Problem 

In a domain  Q = [0,T )× D ,  we consider  the problem of finding functions  u(t, x) ,  p(t, x) ,  and  q(x)  for 
which functional (1) reaches its minimum in the class of bounded functions  (p,q)∈V ,  while the function  
u(t, x; p(t, x),q(x)) with (t, x)∈Q(0) = Q\Q(0),  

  
Q(0) = {(t, x)∈Q : t = t0 , x ∈D\Ω}∪{(t, x)∈Q : t ∈[0,T ),  

 x ∈Ω}   is a solution of the boundary-value problem (2)–(4).  
We investigate problem (1)–(4) in the case where conditions 1°°–3°°  are satisfied.  In order to establish the 

existence of solution of problem (1)–(4), it is necessary first to prove the solvability of the auxiliary problems 
with smooth coefficients. 

In the domain  Q ,  we consider the problem of finding functions  (um , p,q)  on which the functional  

 I (p,q) = dt F1(t, x;um (t, x; p;q), p)dx
D
∫

0

T

∫  

  + F2 (x;um (T , x; p;q),q)dx
D
∫  (24) 

attains its minimum in the class of bounded functions  (p,q)∈V   in which  um (t, x)  is the solution of boundary-
value problem  

  (L1um )(t, x) = fm (t, x; p), (25) 

 um (0, x) = ϕm (x;q), (26) 

  (um − ψm )(t, z) ≡ 0 . (27) 

By using the Green function   (Gm
(1) ,Γm )  from [5, p. 62], for problem (25)–(27), we conclude that, for any  

(p,q)∈V ,  there exists a solution of this problem, which is unique and given by the formula   

 um (t, x, p,q) = dτ Gm
(1) (t, x,τ,ξ) fm (τ,ξ, p)dξ

D
∫

0

T

∫  

  + Gm
(1) (t, x,0,ξ)ϕm (ξ,q)dξ

D
∫  
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  + dτ Γ(t, x,τ,ξ)ψm (τ,ξ)dξ
∂D
∫

0

T

∫ . (28) 

We denote  

 µ(τ,ξ) = dt Gm
(1) (t, x,τ,ξ)

∂F1(t, x,um , p)
∂um

dx
D
∫

τ

T

∫  

  + Gm
(1) (T , x,τ,ξ)

∂F2 (x,um ,q)
∂um

dx
D
∫ , 

 η(ξ) = dt Gm
(1) (t, x,0,ξ)

∂F1(t, x,um , p)
∂um

dx
D
∫

0

T

∫  

  + Gm
(1) (T , x,0,ξ)

∂F2 (x,um ,q)
∂um

dx
D
∫ , 

 Hµ (µ,um , p) = F1(t, x;um , p)+ µ(t, x) fm (t, x; p), 

 Hη(η,um ,q) = F2 (x;um ,q)+ η(x)ϕm (x;q) . 

The following theorems are true:  

Theorem 4.  Assume that conditions 1°°–3°°  are satisfied.  Then 

 (i) if  Hµ   and  Hη  are monotonically increasing functions of the arguments  p   and  q ,  respectively, 
then  p1(t, x)  and  q1(x)  are optimal controls and the optimal solution of problem (24)–(27) has the 
form  

 um
(0) (t, x; p,q) = um (t, x; p1,q1); 

 (ii) if  Hµ   is a monotonically increasing function of the argument  p   and  Hη  is a monotonically de-
creasing function of the argument  q ,  then the functions  p1(t, x)  and  q2 (x)   are optimal controls 
and the optimal solution of problem (24)–(27) has the form  

 um
(0) (t, x; p,q) = um (t, x; p1,q2 ); 

 (iii) if  Hµ   is a monotonically decreasing function of the argument  p   and  Hη  is a monotonically in-
creasing function of the argument  q ,  then  p2 (t, x)  and  q1(x)  are optimal controls and  

 um
(0) (t, x; p,q) = um (t, x; p2 ,q1)  
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  is the optimal solution of problem (24)–(27); 

 (iv) if  Hµ   and  Hη  are monotonically decreasing functions of the arguments  p   and  q ,  respectively, 
then  p2 (t, x)  and  q2 (x)   are optimal controls and the optimal solution of problem (24)–(27) has the 
form  

 um
(0) (t, x; p,q) = um (t, x; p2 ,q2 ) . 

We now establish the conditions of existence of the optimal solution of problem (24)–(27) in the case where 
the functions  Hλ   and  Hµ   are not monotonic. 

Theorem 5.  Suppose that conditions 1°°–3°°  are satisfied for problem (24)–(27) and the functions  Hµ   and  
Hη  are not monotonic with respect to the arguments  p   and  q ,  respectively.  

Then, in order that the control  (p(0) ,q(0) )∈V   and the corresponding solution  um (t, x, p(0) ,q(0) )  of the 
boundary-value problem (24)–(27) be optimal, it is necessary and sufficient that the following conditions be sat-
isfied: 

 (i) as a function of the argument  p ,  the function  Hµ (t, x, p)  takes its minimal value at the point     

p(0) ; 

 (ii) as a function of the argument  q ,  the function  Hη(x,q)   takes its minimal value at the point         

q(0); 

 (iii) for any nonzero vector  ξ = (ξ1,ξ2 )  and  (t, x)∈Q ,  the following inequality is satisfied: 

 K1(t, x,ξ) ≡ ∂um
2 F1(t, x;um

(0) , p(0) )ξ1
2 + 2∂um ∂ p F1(t, x;um

(0) , p(0) )ξ1ξ2  

  + ∂ p
2 F1(t, x;um

(0) , p(0) )ξ2
2 > 0 ; 

 (iv) for any vector  y = (y1, y2 )  and  x ∈D ,  the following inequality is satisfied:  

 K2 (x, y ) ≡ ∂um
2 F2 (x;um

(0) ,q(0) )y1
2 + 2∂um ∂q F2 (x;um

(0) ,q(0) )y1y2  

  + ∂q
2F2 (x;um

(0) ,q(0) )y2
2 > 0 . 

Proof.  Theorems 4 and 5 are proved by using the procedure presented in [8].  Passing to the limit in prob-
lem (24)–(27) as  m1 →∞   and  m2 →∞ ,  we get the optimal solution of problem (1)–(4). 

Note that it is also possible to establish the corresponding theorems for the case where one of the functions 
is monotonic and the other is not monotonic. 
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