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Abstract. The authors consider the basic stages of creating a computer system for decision support

in ecological security. The key factors of environmental pollution caused by ecological and

technological catastrophes and typical failures in the operation of hazardous facilities are analyzed.

Methods for quantitative assessment of the risk function are proposed. Ecological and mathematical

models are created that make it possible to assess the current state of the environment, to make

predictions, and provide comprehension of the process under consideration.

Keywords: model, time series, trend, maximum likelihood method (MLM), least squares method

(LSM), least absolute deviations method (LADM), minimax method (MMM).

Under the condition of scientific and technical progress, the rapid development of the level of anthropogenic and

technical influence on the environment substantially increased. Thus, many biosphere parameters reached critical values

and became dangerous to human life and mankind’s existence as a whole.

The problem arising in this connection makes it necessary to develop a system of decision support in ecological

security. This is one of the most difficult multi-factorial problems. Its solution is only possible with the use of system

analysis methods.

Let us consider the basic stages of creating a computer decision-support system. The first stage is the analysis of

the key factors of pollution caused by ecological and technological catastrophes, typical failures of projects, exploitation

of dangerous objects, etc. The second stage involves a quantitative assessment of the risk function and creation of

an ecological and mathematical model that allows estimating the current state of nature and forecasting the future.

The main goal of the model is to achieve comprehension of the process under consideration.

Let us give an example taken from [1] and deal with the analysis of soils’ main properties. Following [1], it will

suffice to consider (i) acids neutralization; (ii) adsorption of phosphorus and toxic materials; and (iii) oxygen donation.

Let us review each of them.

(i) Acids Neutralization. This capacity is substantial for maintaining the stability of freshwater habitats

necessary for protecting fish and other aquatic life from acidity fluctuations. Soils’ ability to neutralize acids substantially

depends on their types.

Analyzing the situation over the last 100–150 years in the industrial regions of North America and Europe, we

may conclude that soils can buffer large perturbations due to a great amount of sulfuric and nitric acidic rains caused by

the burning of organic fuels. However, the effect of such impacts is not uniform for different regions because of the large

variability in soil type. The paper [1] contains information about the acidification of lakes. The rate of lake response to

acid inputs depends on two fundamental qualities of watershed soils: the ability to retain sulfate and the ability to supply

base cations. It is necessary to know the history of acid emissions and time trends in pH and in the exhaustion of the

watershed soil buffering capacity. Unfortunately, there is little information about it in the literature, and the data available
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are pure. Moreover, experiments in this field are expensive and often impossible. We have to use the information

available. That is why it is necessary to develop methods allowing to make inferences based on incomplete information

such as statistical methods of small sample processing.

(ii) Adsorption of Phosphorus and Toxic Materials. Chemicals being added to soils are known to fall within

four groups: (a) those getting into the ground and then in surface waters; (b) taken up by plants; (c) volatilized into the

atmosphere, and (d) stored in the soil. In cases (a)-(c), when chemicals are input into the environment, their effects are

easy to observe even within a short period after pollution. The fourth way is the most interesting for investigation

because of the nonlinear and time-delayed effects arising. A potential danger of chemicals is their ability to accumulate in

soils thus the threshold for the soil’s capacity to hold the chemical can be reached.

(iii) Oxygen Donation. The most efficient mechanism of producing biochemical energy necessary for any

organic life is the oxidation of organic carbon to carbon dioxide by molecular oxygen. Thus, oxygen donation is essential

for life in the biosphere.

Thus, summarizing data concerning three main soils’ properties, we meet the necessity to design a model (or

a series of models) that answers the following questions.

(a) What level of soil acidity is harmful to human health? When will it be accessed (or whether it will be

accessed) for some regions?

(b) What is the law according to which the soil properties change?

(c) How to estimate the threshold moment for the soil’s capacity to withstand the chemical effect?

MODELS

1. This kind of problems arises in the analysis of different natural and human activity-related phenomena.

The models we design have to reflect rather efficiently the phenomenon under consideration and answer the questions we

put in each specific case. With the possibility to describe the model by analytic expressions, we can considerably advance

in it. On the other hand, we can tend to design the empirical model based on the summing up of the available observation

set. We can define the characteristics of this process with the help of modeling or with estimation on the observation

background. Note that when we investigate such a complicated process, we usually cannot get a satisfactory determinate

model. Therefore, it is natural (see [2] for detals) to consider the investigated process as a sum of two parts: determinate

g t( ) and random W t( ). Thus, the observations model is:

Y t g t W t( ) ( ) ( ),

where g t( ) is a function of an unknown kind containing the unknown parameters: g t g t( ) ( , ) or g t( ) is a function of

an unknown kind belonging to some class of functions. It is necessary to estimate either or the whole function g t( ).

This kind of problem will be called trend extracting.

2. Another class of problems will be given by the following model:

f y t g t W t( ( )) ( ( )) ( )1 , (1)

where ( )t 1 is the observation vector to time moment t 1, W t( ) is a subsequence of independent random

magnitudes, and f and g are some functions. Relation (1) is a stochastic difference equation. The theory of these

equations was analyzed by Kalman [3, 4] and others. The main task is to develop an algorithm to forecast the

process y t( ) based on some observation vector ( )t at time t 1. This problem is investigated in full in the case

where the outcoming signal y satisfies the difference equation

A D y t B D W t( ) ( ) ( ) ( ), A B( ) ( )0 0 1, (2)

and y t( ), in general, is not observed immediately. In fact, we observe the process with white noise:

x t y t t( ) ( ) ( ) ,

where ( )t is some discrete white noise.
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Operators D , A D( ), and B D( ) are defined by the equalities

Dy t y t( ) ( )1 , A D I A Dj
j

j

m

( )

1

1

, B D B D m mj

j

j

m

( ) ,

1 2

1

2

.

This kind of models is analyzed in detail in [5, 6, etc.].

Likewise, we can consider a continuous analog of model (2), where operator D is given by

Dy t
t
y t( ) ( ).

The equation of kind (2) includes a rather wide class of models, including the autoregression model and

autoregression model with moving average. Such models describe rather well the processes related to risk assessment for

ecology end economic systems. For example, in forecasting phosphate reserves in the soil, when data at previous time

moments are known, the difference equation (2) is a quite natural model of the real process. Some difficulties may arise

because the trend is generally time-dependent, so coefficients of A D( ) may be time-dependent too. The forecasting

methods have been developed in such case as well [7]. But unlike the previous case, the Wiener–Kolmogorov method is

used here, and the solution of the forecast problem reduces to some difference or differential equations.

Note that for some substances propagating in the soil it is sometimes convenient to treat the forecasted parameter t

as a vector one. Then the model under study can be presented as (2), but the operator D has the form

D
t t

m

m...

, t t tm( , ..., )

1

,

and W t( ) is a multidimensional white noise.

Such systems are analyzed in [8].

Certainly, t is interpreted here not as a time parameter but as an averaged coordinate of some domain. Harmful

substance forecast is made for neighboring regions.

Let us make some important notes on the models that describe soil pollution, accumulation of chemical substances

and acids in soils, etc. Since our purpose is to obtain estimates related to the presence of chemicals, acids, and heavy

metals in soil, it is natural to solve our problems using the mathematical methodology of random fields. We will analyze

the so-called geochemical field, where the content of some chemical substance will be treated as a coordinate and time

function. Thus, a random geochemical field will be a function of time t and space variable x t x t x: ( , ) ( , , ), where

is an element of the probability space , t T R, x R
m
, m 1. Chemical concentration is considered in a

domain if m 2 and in a space if m 3. In experimental studies, a mean value of a point spatial variable within some

domain or volume at time t is only available. For instance, we can describe the mean value of the function ( , )t within

the domain S at the point x S at time t as follows:

g t x
S

x h dh

x h S

( , ) ( )

1

.

Similarly, we can determine the mean value of the function ( , )t within the volume V with the center of gravity

at the point x S at time t :

g t x
V

x h dh

x h V

( , ) ( )

1

.

Let us list the natural assumptions necessary to be made for the correct problem solution if we use the mean value

g t x( , ) of the function ( , )t x .

(i) Uniformity of the Random Field ( , )t x on x in a Restricted or Broad Sense [9]. This property is

manifested in the fact that at any point of the field, a random function has the same average characteristics. In other

words, we can repeat the experiments over and over again in order to obtain as much as desired realizations of the
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random function and thus to make the corresponding statistical inferences. This hypothesis will be inapplicable if the

regular change of the values of ( , )t x is observed, i.e., when the observation point moves away from the central part of

the field. Sometimes, it is convenient to consider the field with stationary increments rather than a uniform field, i.e.,

joint distribution of the random values

( , ) ( , ) ( , )t x t x t xk k k1

under fixed t stays constant when the variables xk are simultaneously moved with respect to h.

(ii) Continuity. Usually, soil properties change slowly and continuously. That is why this condition looks quite

natural.

Apparently, properties (i) and (ii) are basic for the natural transition from the observations of function ( , )t x to its

average characteristics y t x( , ). Thus, if we fix some domain Dx by any point x D , we can go to the forecast estimation

problem for any random function y t y t x( ) ( , ) omitting index x and implying that the problem is being solved for some

specific area or region.

Thus, we can consider the case where the sequence of random value observations for which some statistical

inference should be made is y t y tn( ), ..., ( )

1

. We will call the sequence y t y tn( ), ..., ( )

1

a time series.

ANALYSIS

Before solving the problems of finding the estimation, forecast, and distribution for some functionals, we will

make a preliminary analysis of the time series. In our opinion, it consists of the following steps:

1a. Observation independence checking.

2a. Trend presence hypothesis checking.

3a. Observed value distribution hypothesis checking.

Then we perform a more detailed time series analysis. It consists of the following steps:

lb. Finding the class of models subject to investigation.

2b. Model parameter statistical estimation.

3b. Forecast of the time series values at the next time moments.

There is no need to dwell on the preliminary statistical analysis of time series. These problems are elucidated in many

textbooks and monographs on mathematical statistics. We performed the statistical analysis for the data from [1]. The

statistical information was processed by a software complex [10]. The main conclusion is the fact that, as a rule, each time

series from [1] has a trend. The observation errors can be treated as independent, but normality does not always take place.

Problem of Trend Revealing. Let us consider the problem of trend revealing. First, note some specific properties

of the above-mentioned time series.

1. As pointed out in [1, etc.], there is a lack or absence of information for many regions.

2. The noise distribution is not always known.

Taking into account these facts and performing a preliminary analysis of the time series, we can use different

methods for trend revealing. The most known are: the maximum likelihood method (MLM), the least squares method

(LSM), the least absolute deviations method (LADM), and the minimax method (MMM). We will describe each of them

later and only mention that LADM is the most preferable in our case. The least absolute deviation estimators (LADE) are

referred to as robust estimators, i.e., the estimators that have advanced stability with respect to the changes in the error

distribution law, the presence of a rough error, etc. Moreover, the LADE are considerably more efficient in the case of

a small sample. A series of studies of the LADM qualitative behavior has been done recently. First, the consistency of the

estimators should be emphasized. Rather simple and easy-to-test consistency conditions are provided in [11, 12]. Note

that rather general models are analyzed, where the parameter is generally contained in the regression function

nonlinearly, and the noise may be dependent at different instants of time. Moreover, the statement of asymptotic

normality can be proved under quite natural conditions.

One more circumstance should be mentioned. In considering small samples, the asymptotic properties such as

consistency, asymptotic normality, etc. cannot be the criteria of estimators’ quality. In this case, the estimators’ stability

(robustness) with respect to the observation distribution laws and the error variance are primary. In this respect, in the
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case of unknown distribution we should prefer LADM and MMM. In the case of large samples, we certainly should try to

get estimators’ consistency and asymptotic normality.

1. The Maximum Likelihood Method (MLM) is preferable because of its properties in the cases where the noise

distribution is known. There are classical results widely known for specialists in statistics: under some natural conditions,

MLM estimators are consistent, asymptotically normal, and effective. However, their calculations imply great

difficulties, that is why this method is not often used in practice. We will not describe these estimators in detail. Their

properties are detailed in [2, 4].

2. The Least Squares Method (LSM).

The problem formulation is as follows. Consider the problem of estimating the integer nonlinear parameters

contained in the regression function. The observation model is as follows:

x g tj j j( , ) , j n1, ,
(3)

where A is a vector parameter belonging to some feasible set A, g t j( , ) is a regression function, and j is

random errors of the observations.

The observations may be independent or dependent but should be a stationary (in a narrow sense) sequence of

random values with the unknown distribution function that is independent of .

It is necessary on x j , j n1, , to get observations (3) to estimate .

The random vector n that minimizes the sum of squared residuals

n

u A

nL uarg min ( ), L u x g t un j j

j

n

( ) [ ( , )]

2

1

is called the least squares estimator (LSE) of vector .

Due to the simplicity of the criterion and the fact that it is well adapted to the calculation procedures, the LSM

is the most popular and well-studied method. It coincides with the MLM in the case of the Gaussian observation errors. It

is most convenient for the calculations when the unknown parameter is contained in the regression function linearly.

Here, we will not provide an example of the calculation algorithms and consistency, asymptotic normality, and

asymptotic efficiency statements, we will only refer to the studies [2, 11]. Turning to the time series that describe the

distribution of elements in the soil, we can make some conclusions regarding the trend. For instance, from Fig. 6 [1], we

can see that the trend can be approximated by a straight line, for Fig. 11 [1] the approximating curve is a parabola, etc.

But a linear relation cannot always be obtained. That is why it becomes important to investigate the LSE properties when

a nonlinear dependence on the parameters takes place. Yet a deep analysis of estimators’ properties is made in this case

as well. However, finding the estimators involves significant calculation difficulties.

Note that even in the linear case, the calculation schemes have such a grave disadvantage as the necessity to save

in the memory and to process large amounts of numerical information. The recursive computation schemes for the least

square estimators described in [13, 14] do not have these disadvantages. Their essence is as follows. Let the following

random sequence be observed:

i i
i i( ) , , , ...,1 2

where ( )i is a known function, is an unknown parameter,

i
is a sequence of independent random variables. The

iterative procedure for estimating the stochastic approximation parameter when x
0

0 is as follows:

x x

i

s s x
s s

i

s

s s1

2

1

1

1 2

1

1 1

( )

[ ( ) ( ) ] . (4)

Thus, for the least squares estimators we have determined the iterative procedure that allows estimating the

parameter by ( )s 1 observations when the LSE based on s observations and the observation at the time ( )s 1 are

known. For the sake of completeness, we provide the statement about the convergence of the iterative procedure (4)

with the probability one for the rather general case of nonlinear regression.
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Suppose that the random sequence { }y kk , 1 is observed:

y m x xk k

k
( )

*

, x z
k*

, , m x Rk

N
( )

*

,

where z
k

is a sequence of, generally speaking, dependent random vectors with E z
k

( ) 0, m xk ( )

*

is a known

sequence dependent on the unknown parameter x
*

. The problem is to estimate x
*

using the observations yk . We

will use the following iterative procedure for estimating x
*

:

x x s x R
s s

s

s l N1

1, , ,

where { , }c ss 1 and { , }s s 1 are the sequences of positive numbers and inf cs 0. The following statement

is true [15].

THEOREM 1. Let the following conditions be satisfied:

1. u s x m x m x k xs s( , ) || ( ) ( ) || ( || || )

*

1 .

2. u s x x k( , )( || || )1 .

3. The sequences { , }c ss 1 , { , }s s 1 , and { , }z ss 1 , satisfy the conditions:

(a) s s

s

c

1

,

(b) s s

s

c
2 2

1

,

(c) s s

s

s

z
c E z s|| / ||

1

,

where

z
s is a -algebra generated by the random values z z

s1

, , .

(d) For any 0 inf inf

s x x

s sm x m x x x
1

1

0

|| ||

* *

*

( ) ( ), , where is a scalar product in R
N
, || || ,

/

x x x
1 2

.

Then || ||

*

x x
s

0 with probability 1, i.e., x
s
is a strongly consistent estimator of x

*

.

3. The Least Absolute Deviations Method (LADM). The least absolute deviations estimator (LADE) of the

parameter is a random vector n that minimizes the sum of the absolute values of the residuals

n

u A

nL uarg min ( ) , L u x g t un j j

j

n

( ) | ( , ) |

1

.

The LADEs coincide with the maximum likelihood estimators when the noise has the Laplace distribution. They

are called robust estimators, i.e., estimators that have advanced stability with respect to the variations in the error

distribution law, the presence of rough errors, etc. Moreover, the LADEs are much more efficient in the case of a small

sample. A number of studies of the LADM qualitative behavior have been carried out recently. First, noteworthy is the

consistency of the estimators. Simple and easy-to-test consistency conditions are provided in [11, 12]. Note that rather

general models are being analyzed, where the parameter is usually contained in the regression function with a nonlinear

maximum, and the noise may be dependent at different instants of time. Moreover, the statement of asymptotic normality

is proved under rather natural conditions.

One more circumstance is noteworthy. When small samples are under consideration, asymptotic properties such as

consistency, asymptotic normality, etc. cannot be the criteria of the estimator quality. In this case, the estimator stability

(robustness) with respect to the observation distribution law and the error variance are primary. In this respect, in the case

of unknown distribution, we should prefer here LLM and MMM. In the case of large samples, we certainly should try to

attain the consistency and asymptotic normality of the estimates.

As an illustration, we will provide some statements about the asymptotic behavior of the LADE.
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THEOREM 2. Let us have the following observation model:

xi i i( )

0

, i n1, ,

0

K,

where K is a compact subset from R
l
, i is equally distributed symmetric independent random values, M i

0

0,

M i
0

2

, and the conditions below are satisfied:

(i) lim [ ( , ) ( , )]

n K

nsup

1 2

1 2 1 2

0 ,

where n i i

i

n

n
( , ) | ( ) ( ) |

1 2 1 2

1

1

, and ( , )

1 2

is uniformly continuous at the diagonal

1 2

.

(ii) lim ( , )

n
n 1 2

.

(iii) lim | ( ) | |

\ ( , )

n K
i i

i

n

n n
E x

n
Einf

0

1

0 0

1 1

1

xi i

i

n

( ) |

0

0

1

,

where ( , ) { , }

0 0

r r .

Let n

K i

n

i ixargmin | ( ) |

1

. Then P
n

nlim

0

1.

Under the additional conditions of the smoothness of the functions i ( ) on the parameter the central limit

theorem for the values n n( )

0

takes place as well.

Theorem 2 is a simplified version of the statement about the strong consistency of the least absolute deviations,

given in [11], where the rate of the convergence of the estimator to the real value is found.

THEOREM 3. Let the conditions of Theorem 2 and the following conditions be satisfied.

(i) gi
i ( )

exists.

(ii) The random values of i have a bounded probability density h x( ) and the inequality

| ( ) ( ) | | |g x g H x0 , H 0

holds. Then

sup ( ) ( ) ( )

/

K

i

i

n

nP h g x2 0

2

1

0

1 2

0

( )x 0, n ,

where x R
1

and ( )x is a Gaussian distribution function.

Let us formulate one more statement about the estimators of the least absolute deviations when the regression

function depends on random values. This kind of model was analyzed in [16, 17, etc.].

Let us describe the observation model.

Let { }( , ),x y ii i 1 be a stationary (in a narrow sense) metrically transitive random process with a discrete

parameter specified on the probability space ( , , )P , x Ri

k
, y Ri

m
, k 1, m 1, and || ||

1

be a norm on R
k

defined as

|| || | |a a j

j

k

1

1

, a a a Rk

k
( , ..., )

1

T

.

For ( , )x yi i , the following conditions are satisfied.

(i) E xi|| ||

1

.

(ii) for any i , E x F f yi i i( / ) ( , ) with probability one, where f u z I R R
m k

( , ) : is a function continuous on

I when z is fixed and measurable on z when u is fixed; is a fixed but unknown value from the closed set I R
l
, l 1.
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(iii) for any c 0 , E f u y
u I u c

imax || ( , ) ||

{ , ||| ||| }

1

1

.

(iv) for any sequence { }u jj , 1 as || ||u j 1

, j , || ( , ) ||f u yj i 1

with probability one as j .

Let us introduce the notation:

i i ki i ix f y( , ..., ) ( , )

1

T

, f f f k( , ..., )

1

T

.

(v) for any j k1,

P Fji i{ }0

1

2

/ .

(vi) for any u I u, , there exists j j k:1 such that with probability one

f u y f yj i j i( , ) ( , ) .

(vii) for any 0, P F P Fji i ji i{ [ , ] / } { [ , ] / }0 0 0 .

Given the observations {( , )}, }x y i ni i 1 , we need to estimate the unknown parameter . Let us consider

the LADE

n

u I

n nF uarg min ( ), || ||

1

,

(5)

F u
n

x f u yn i i( ) || ( , ) ||

1

1

.

The following theorem holds [11, 16, 17].

THEOREM 4. Let the conditions (i)–(vi) be satisfied. Then there exists at least one vector n that satisfies

condition (5) and

P
n

nlim

0

1, P F F
n

n nlim ( ) ( ) 1,

where F u E x f u yi i( ) {|| ( , ) || }

1

, u I .

4. The Minimax Method (MMM). This method is often used to solve various problems, but these estimators

have hardly been qualitatively analyzed. The difficulty is that it is impossible to apply the ergodic theorem and the

central limit theorem to analyze the asymptotic properties. Nevertheless, due to the simplicity of the objective function, it

is convenient to use these estimates at the preliminary stage for the calculation of the LSE and LADE. The practical

expediency of this approach is noted in [10], where a software complex for the statistical processing of experimental data

using the above-mentioned reasons is described. Note that wide use of the LADE and of the minimax estimator (MME)

was suppressed by the calculation difficulties related to the minimization of nonlinear, nonsmooth, and nonconvex

functions. In the case of the linear regression function, this difficulty can be avoided by reducing the criterion

minimization problem to a linear programming one. The most recent achievements in nonsmooth optimization make it

possible to solve the problem in the case of nonlinear regression function as well. In [10], the r-algorithm (the generalized

gradient descent with the space dilation in the two consequent difference directions of subgradients ([18]) is described.

The estimate is calculated under the constraints imposed on the set of parameters:

A R
m
, A i mi i i{ : , , }1 .

In the general case, finding the global optimum is a difficult problem because of the nonconvexity of the objective

function. That is why it is expedient in practice to take into account some a priori information about the localization of

the global minimum. A natural way is to divide the problem into two parts. The first stage is to find an approximate

problem solution under some simplifying prepositions. The MMM can be used as a first approximation. In the absence of

rough errors, the MME is known to approximate the LADE rather well since it is robust but has a simpler objective

function. Then at the second stage, the minimum point of the original problem can be found by the nonsmooth

optimization method.
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Let us mention one more significant fact. As a rule, the type of the regression function cannot be described

accurately enough based on the initial or visual data. That is why a large base of approximating functions that allows

choosing the most suitable one is necessary. The more complete the set of approximating functions, the more possibilities

for a more accurate estimation of the regression function.

Let us describe one more model of nonparametric estimation of regression function in some functional space. In

our opinion, it rather adequately reflects the physical processes mentioned above. Suppose that the observations of the

soil or another object take place at discrete instants of time with independent errors, and we need to determine the trend at

any time on the entire observation interval. In other words, we need to recover the regression function in an optimal way

with respect to some criterion, based on its distorted observations at discrete instants of time with additive noise. The

MLM, LSM, and LADM can be taken as the criteria. A more exact formulation is as follows.

Let K be a real set, compact with respect to some metric on [0, 1], { }jn j n,0 be a set of real independent

random variables with finite first two moments. The observation model is as follows:

x
j

n
jn jn0

, 0 j n ,
0

K. (6)

We will consider the LSE or LADE as the estimates:

L x
j

n
n n

K
jn

j

n

( ) min

2

0

, (7)

L x
j

n
n n

K
jn

j

n

( ) min

0

. (7 )

Note that the problems of minimization by criteria (7) and (7 ) are more difficult than those considered above

because the optimum is being found on some class of functions. Such estimation problems are called nonparametric.

Their solution involves a lot of difficulties, both computing and qualitative, in the analysis of the statistical properties.

However, numerical methods for finding the optimum are developed for these models as well. Among the studies in this

field, noteworthy is the interesting approach developed in [19].

For a set of continuous functions in the space with a uniform metric, the LSE is analyzed in [12] and the LADE

in [11]. Let us consider model (6) with criterion (7 ) in more detail, assuming that the unknown function belongs to some set

from the Hilbert space. The proofs of the basic statements will give an idea of the methods of analysis of such problems and

the mathematical technique used there. We will prove the statement about the strong consistency and the functional limit

theorem for the standardized estimators. In particular, we will prove the weak convergence of the standardized estimates to the

standard statement of the Wiener process. Therefore, any linear functional of the estimator converges to the linear functional of

the Wiener process. In particular, it is rather important in practice to know the distributions

sup

0 t T

n t( ), sup

0 t T

n t( ).

Since the statements on the weak convergence are proved, to calculate the distributions of these functionals, it will

suffice to know the functional sup

0 t T

W t( ) , whereW t( ) is a standard Wiener process. This distribution is known and is

given, for example, in [19]. It looks as follows:

P a W t b

t T

sup

0

( )

1

2

2

2
2 1

2 1

2

T

y

Tn b a a

n b a a

( )( )

( )( )

exp dy
y

Tn b a b

n b a b

( )( )

( )( )

2 1

2 1

2

2

exp dy

n 0

. (8)
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Thus, we can calculate the probabilities of locating inside a band of some characteristic. It may be the content of

phosphates in the soil, heavy metals (for instance, cadmium), or the amount of different salts on the soil surface or in the

depth. Moreover, given the distribution of the functional, we can find the first jump over the threshold, which can

characterize the critical level of the inclusion of some substance.

Let us now formulate the problem more strictly.

1. Let K x t t{ ( ), [ , ]}0 1 be a set of real functions, compact in the sense of convergence in L
2

and satisfying the

conditions:

(a) || ( ) ||x t 1, where || ( ) || ( )x t x t dt
2 2

0

1

;

(b) x t( ) can only have a finite number of discontinuities of the first kind and satisfies the uniform Lipschitz

property at the intervals of continuity: | ( ) ( )| | |x t x t c t t
1 2 1 2

, the constant c being independent of the function x and

the points t
1

and t
2

, at the points of discontinuity x t x t( ) ( )0 .

2. For each n 1, jn , 0 j n, are independent random variables satisfying the conditions:

(a) E n0 0 ;

(b) E n[ ]

0

2 2

.

We assume that for a fixed function

0

K, the random variables

x
k

n
k nkn kn0

0, ,

are observed. It is necessary to estimate the unknown function

0

K from the observations xkn . Let us choose the

least square estimate for n as the estimate for

0

. n is an element from K defined by the relation

x
j

n
x

j

n
jn n

j

n

K
jn

2

0

min

2

0j

n

.

The minimum is reached because of the compactness of the set K. It can be shown that n t( ) can be chosen to be

a separable measurable stochastic process. In what follows, we will need the following assertions proved in [12].

THEOREM 5. Let ( , , )F P be a probability space, { }F nn , 1 be a sequence of -algebras such that F Fn n 1

,

n 1, and K be a compact subset of some Banach space with the norm || || . We assume that

{ ( ) ( , ), ( , ) , }Q S Q S S K nn n 1

is a sequence of real functions satisfying the following conditions:

(i) for a fixed n and each S K, the function Q S Rn ( , ): is Fn -measurable;

(ii) for fixed n and , the function Q S K Rn ( , ): is continuous on K; for each n 1 and , the element

S S Kn n ( ) is given by the relation

Q S Q Sn n
S K

n( ) min ( ) ;

(iii) for some fixed element S K
0

and for each S K , the relation

P Q S S S
n

nlim ( , ) ( , )

0

1

is true for some real functions ( , ) :S S K R
0

, continuous on K and such that

( , ) ( , )S S S S
0 0 0

, S S
0

;

(iv) for any 0, there exists

0

0 and a function c R R( ): , c( ) 0, 0 , such that for each S K and

each 0

0

the relation
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P Q S Q S

n S S S S S

n nlim sup | ( ) ( ) |

{ : ||| || , || || }

0

c( ) 1

holds. Then

P S S
n

nlim || ||

0

0 1.

The following assertion follows from Theorem 5 [12].

THEOREM 6. Assume that the conditions of Theorem 4 are satisfied and that

E jn| |

4

.

Then

P t t
n

nlim || ( ) ( ) ||

0

0 1.

Let us analyze the distribution of the functionals of the estimators n . Assume additionally that

(vii)

0

is an internal point of K in the following sense:

(a) || ( ) ||

0

1t ;

(b) for

0

( )t , condition 1b is satisfied for a constant

~

c c.

The following auxiliary assertions take place [12].

LEMMA 1. Let the condition of Theorem 6 be satisfied and let

0

be an internal point of K. Then for some

function ( )t K such that

|| || , ( )1

0

1

t dt

the distribution of the random functional

n t t t dtn

0

1

0

( )[ ( ) ( )]

weakly converges to the distribution of a normal random variable with zero mean value and variance

2

as n .

LEMMA 2. Let the conditions of Lemma 1 be satisfied and let

E jn| |

6

.

Then the following inequality holds for each 0 1

1 2

t t :

E n t t dt c t t

t

t

n

1

2

0

6

2 1

2

[ ( ) ( )] ( ) .

Lemma 1 and Lemma 2 imply the following theorem.

THEOREM 7. Assume that the conditions of Lemma 2 are satisfied. Then the sequence of random processes

n t( ) weekly converges to a standard Wiener process as n .

Problem of Attaining the Critical Threshold. Let us now turn to certain problems related to the behavior of

some ecological systems, including those described above. As indicated in [20], real ecological systems are subject to

various random influences. If the time of these random influences or perturbations is considerably less than the system

operation time, it is possible to apply the rather developed tool of Markov processes to analyze the entire system

(the dynamics of its development). Under these conditions, white noise is a natural model of random perturbations. For

these perturbations, there is a well-developed mathematical apparatus that allows us to describe systems’ dynamics as

a stochastic differential equation:

dx t

dt
a t x t t x t t

( )

( , ( )) ( , ( )) ( ) , (9)

where a t x( , ) is a drift coefficient corresponding to the determinate part of the system’s development, and ( )t is a white

noise. Taking into account a random influence combined with the white noise (which is an idealized random process

with a small time correlation) allows us to use the well-developed apparatus of the stochastic equation theory and to
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obtain qualitative and quantitative results in modeling the behavior of process (9). Equation (9) determines the diffusion

process with the densities of nonstationary probabilities satisfying the Kolmogorov equations (direct and inverse ones).

For these processes, we can estimate some characteristics of the behavior of the ecological system mentioned above; e.g.,

the problems related to attaining the critical threshold by the system. Let us dwell on this problem.

Let ( , )r r
1 2

be the interval of feasible changes of x t( ) and T be the instant of time when x t( ) leaves the interval

( , )r r
1 2

for the first time. A significant assumption is that the probability of x t( ) abandoning the interval ( , )r r
1 2

for the

first time is strongly positive, i.e.,

P x t r
t T

lim ( )

1

0 .

If T then we say that the bound may be attained in a finite time. This bound is called attractive. It is evident

that there are two interesting groups among attractive bounds: (i) absorption bounds and (ii) permitting bounds. As to the

type of bounds, there are some results in the stochastic equation theory that provide a full and complete reply under some

conditions, for instance, in [21, 22]. We will not dwell on the results related to the time of intersecting some level

(threshold). Let us turn our attention to some of them.

For simplicity, we will consider a uniform in time stochastic equation, assuming that in (16)

a t x a x( , ) ( ) , ( , ) ( )t x x .

The following statement takes place.

THEOREM 8. Let ( )x 0 when x a b[ , ] . Then x a b t x t a b[ , ] inf : ( ) [ , ]{ }, x x( )0 is finite with probability 1

when x a b( , ) and E a b xx[ , ] ( ) , where ( )x is the solution of the differential equation

1

2

1

2

( ) ( ) ( ) ( )x x a x x ,

satisfying the condition

( ) ( )a b 0.

The proof of Theorem 8 is typical of the theory of diffusion processes. It uses Markov moments and stochastic

differential calculation apparatus [21].

Using the Ito formula and Theorem 8, we can get the equation for obtaining the second moment of x a b[ , ] . Let us

formulate this statement.

THEOREM 9. Under the conditions of Theorem 8, E a b xx{ }[ , ] ( )

2

1

satisfies the equation

1

2

2

2

1

( ) ( ) ( ) ( ) ( )x x a x x x ,

where

1 1

0( ) ( )a b and the function ( )x is defined as in the previous theorem.

As shown above, we have found two first instants of time of the first exit of the diffusion process from some

interval. However, we can obtain a fuller description of the behavior of the random value x a b[ , ] . It is obvious that

when x a b( , ) x a b[ , ] equals either a or b. Let

x xa b a b
1

[ , ] [ , ] if x a b a[ , ] ,

and

x xa b a b
2

[ , ] [ , ] if x a b b[ , ] .

Let

i

a b
x Ee x

i

( )

[ , ]

be the Laplace transform of x

i
a b[ , ], i 1 2, . Then, as shown, for instance, in [22],

1

( )x satisfies the following

equation:

L x x x a b
1 1 1 1

0 1 0 0( ) ( ), ( )( ) , ( ) ,

where L satisfies the equation

L a x
x

x

x

( ) ( )

1

2

2

2

2

.
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Similarly,

2

( )x satisfies the following equation:

L x x x a b
2 2 2 1

0 0 0 1( ) ( ), ( )( ) , ( ) .

If we know the Laplace transform, we can write the other characteristics of the variable x a b[ , ].

One of the most important questions is calculating the probability of the first exit of the random process x t( ) from

some interval. First of all, we are interested in finding the probability of the random process x t( ) being at point a earlier

than at point b and vice versa. It is obvious that when x a b( , ), the random process x t( ) appears at the nearest point

earlier with probability 1. Therefore, we will suppose that x a b( , ). Let P x ba ( , ) be the probability that the random

process x t( ) appears at point a earlier than at point b, when it is at the point x for the first time.

The following statement given in [21, 22] is true.

THEOREM 10. Let x a b( , ) and ( )x 0. Then P x ba ( , ) satisfies the equation

P x b
u x u b

u a u b
a ( , )

( ) ( )

( ) ( )

,

where u x( ) is the solution of the equation

1

2

0

2

( ) ( ) ( ) ( )x u x a x u x , (10)

which is not equal to zero identically on the interval [ , ]a b .

Proof. Let

( )

( ) ( )

( ) ( )

x
u x u b

u a u b
.

It is obvious that ( )x satisfies (10). Using the Ito formula, it is easy to show that

Ex a b xx[ , ] ( ) .

According to the assumption, x a b ax[ , ] with probability P x ba ( , ) and x a b bx[ , ] with probability P x ab ( , ).

Hence,

( ) [ , ] ( ) ( , ) ( ) ( , ) ( , )x Ex a b a P x b b P x a P x bx a b a .

Similarly, we can obtain the formula for P x ab ( , ).

The theorem is proved.

COROLLARY 1. Let ( )z be a Laplace function. Then

P x b

z dz

z dz

a
x

b

a

b
( , )

( )

( )

, P x a

z dz

z dz

a
a

x

a

b
( , )

( )

( )

. (11)

To prove (11), it will suffice to mention that

u x z dz

a

x

( ) ( )

satisfies the conditions of Theorem 10.

COROLLARY 2. If a x( ) 0, then P x ba ( , ) and P x ab ( , ) have simpler forms:

P x b
b x

b a
a ( , ) , P x a

x a

b a
b ( , ) .

Note that the probability that the random process x t( ) stays within the interval [ , ]a b is given by the formula (8) in

the case of the Wiener process. By virtue of the Girsanov theorem [23], under the natural conditions, by replacing the

measure and passing to another probability space, the space x t( ) will also be a Wiener-transformed measure, relatively.

And then we can apply (8) to the obtained process.
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So, using model (16), we can estimate the time of onset of the critical level of saturation of some element (for

instance, the maximum permissible level of phosphorus in the soil) and take pre-planned precautions.

Note that in the previous section, we touched upon the problem of exceeding the level in the model described by

Eq. (16). Rather extensive studies in finding the time of attaining some level and staying within the interval were carried out

for stationary, Gaussian, and Poisson processes and these results will be used for sure in the case of an adequate model.

More detail can be found in [24], but we cannot dwell on them right now. We can only provide some facts that are

useful for the solution of the problem given above.

Consider a stationary Gaussian process. The main idea is to compare this process with a normal process x t
*

( )

whose maximum can be easily calculated. As an example, let us consider the process

x t t t
*

( ) cos sin ,

where 0, , and are standard normal values.

It is obvious that the random process x t
*

( ) is Gaussian. It can be easily rearranged as

x t A t
*

( ) ( )cos .

For such processes, the following statement is true.

LEMMA 3 [24]. Let M t x t

t T

*

[ , ]

*

( ) ( )sup

0

. Then

P M t u u
T u

{ } exp

*

( ) ( )

2 2

2

(12)

for 0 T / and u 0 .

Proof. Let N N tu ( ) be the number of times the process x t
*

( ) abandons the level u on the interval [ , ]0 T . Then

E N
T u

( )

2 2

2

exp

and

P M t u P x u P x u N u E N{ ( ) } { ( ) } { ( ) , } ( ) ( )

* * *

0 0 1 1

1

2 2

2

( ) expu
T u

, (13)

where

( )

/

u e dt
t

u

1

2

2

2

0

.

Equality (13) is equivalent to (12); therefore, the lemma is proved.

The comparison of an arbitrary Gaussian process with the process x t
*

( ) is based on the following statement [25].

LEMMA 4. Let x t
1

( ) and x t
2

( ) be Gaussian continuous processes with Ex t Ex t
1 2

0( ) ( ) and Ex t Ex
1

2

2

2

1( )

and let r t s
1

( , ) and r t s
2

( , ) be their covariation functions. Let for some 0 r t s r t s
1 2

( , ) ( , ) for each 0 t s, . Then

the maximums M t
1

( ) and M t
2

( ) of these processes satisfy the relation

P M t u P M t u{ } { }

1 2

( ) ( )

for any 0 T .

The proof uses the piecewise-linear approximation of processes x ti ( ) by processes x tn

i
( ), taking the values x ti ( )

on the set { , , , }jq jn 0 1 and being linear inside the intervals ( , )jq jqn n 1

, qn 0, n 0. Denote M ti

n
( )

= max { }x jq jq Ti n n( ),0 . I t is obvious that M t M ti

n

i( ) ( ) as qn . Put qn
n

2 . Then
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{ } { }M u M ui

n

i , that is why P M T u P M T ui

n

i{ } { }( ) ( ) as n . It can be easily seen that

P M T u P M T u
n n

{ } { }

2 1

( ) ( ) [25]. These facts prove the lemma.

Using Lemmas 1 and 2, it is easy to obtain the following important statement.

THEOREM 11 [25]. Let u T, so that

T u

2 2

0

2

1 2

2

/

exp and the correlation function r t( ) of the

process x t( ) satisfy the following condition: r t t( ) ln 0 as t . Then

P E T u e{ }( )

as T and

P a E T b x et T

x
{ } exp{ }( ( ) )

as T , where

a TT ( ln )

/

2

1 2

, b T

T
T ( ln )

ln

( ln )

/

/

/

2

2

2

1 2

2

1 2

1 2

.

We have analyzed the properties of the extremums of the Gaussian process without obtaining the information

about the location of the extremums.

Let L t( ) be a point at which the process x t( ) attains its maximum for the first time on the interval [ , ]0 T . We may

suppose that L t( ) has a uniform distribution for any stationary process. But this is generally incorrect. This takes place if

x t A t( ) ( ) , where is a random variable uniformly distributed on [ , ]0 2 . For the stationary Gaussian process, L t( )

is always symmetric on [ , ]0 T , and the possible jumps at points 0 and T have equal values. One of the methods to

eliminate points like 0 and T is to move them away to infinity. The question arises whether L L t( ) is asymptotically

uniform as T . For Gaussian stationary processes, this fact is a consequence of the asymptotic independence of the

maximums on the intersecting intervals. More precisely, the following statement takes place.

THEOREM 12. Let x t( ) be a stationary Gaussian process, Ex t( ) 0 , Ex t
2

1( ) ,

2

0r ( ) , r t t( ) ln 0

as t . Then

P L T lT l{ }( )

as T , 0 1l .
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