• українська
    • English
  • English 
    • українська
    • English
  • Login
View Item 
  •   ARCher Home
  • Факультет математики та інформатики
  • Наукові праці
  • View Item
  •   ARCher Home
  • Факультет математики та інформатики
  • Наукові праці
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The lateral order on Riesz spaces and orthogonally additive operators

Thumbnail
View/Open
references (65.56Kb)
Date
2021
Author
Mykhaylyuk, Volodymyr
PLiev, Marat
Popov, Mikhail
Metadata
Show full item record
Abstract
The paper contains a systematic study of the lateral partial order ⊑ in a Riesz space (the relation x⊑y means that x is a fragment of y) with applications to nonlinear analysis of Riesz spaces. We introduce and study lateral fields, lateral ideals, lateral bands and consistent subsets and show the importance of these notions to the theory of orthogonally additive operators, like ideals and bands are important for linear operators. We prove the existence of a lateral band projection, provide an elegant formula for it and prove some properties of this orthogonally additive operator. One of our main results (Theorem 7.5) asserts that, if D is a lateral field in a Riesz space E with the intersection property, X a vector space and T0:D→X an orthogonally additive operator, then there exists an orthogonally additive extension T:E→X of T0. The intersection property of E means that every two-point subset of E has an infimum with respect to the lateral order. In particular, the principal projection property implies the intersection property.
URI
https://archer.chnu.edu.ua/xmlui/handle/123456789/2009
Collections
  • Наукові праці

ARCher software copyright © 2021  ChNU
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of ARCherCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

ARCher software copyright © 2021  ChNU
Contact Us | Send Feedback
Theme by 
Atmire NV