Показати скорочений опис матеріалу

dc.contributor.authorBalovsyak, Serhiy Vasyl'ovych
dc.contributor.authorDerevyanchuk, Oleksandr Volodymyrovych
dc.contributor.authorYarema, Sergiy Volodymyrovych
dc.contributor.authorTomash, Vasyl Vasylyovych
dc.contributor.authorDerevianchuk, Yaroslav Volodymyrovych
dc.date.accessioned2022-11-19T17:19:13Z
dc.date.available2022-11-19T17:19:13Z
dc.date.issued2022
dc.identifier.issnPRINT 2367-8399
dc.identifier.issnWEB 2534-8493
dc.identifier.urihttps://archer.chnu.edu.ua/xmlui/handle/123456789/5810
dc.description.abstractA prototype of a system for segmenting images of trains and wagons has been developed. Video cameras and specialized websites are used as the source of the original images. Median filtering of images and increase of their local contrast is carried out. The contours of the objects were calculated using the Sobel and Canny methods. Image segmentation is performed by the method of contour lines. As a result of the processing on the images of trains and wagons, meaningful areas (segments) were identified, for example, windows, headlights, etc. Detection of content areas of the object is performed using fuzzy membership functions. The hardware and software implementation of the computer system is made in Python using scipy and scikit-fuzzy libraries, the Google Colab cloud platform and Raspberry Pi 3B+ microcomputer.uk_UA
dc.subjectDIGITAL VIDEO CAMERA, PYTHON, IMAGE SEGMENTATION, LOCAL CONTRAST, FUZZY LOGIC.uk_UA
dc.titleBalovsyak S.V., Derevyanchuk O.V., Derevianchuk Ya.V., Tomash V.V., Yarema S.V. Segmentation of railway transport images using fuzzy logic // Trans Motauto World. Vol. 7 (2022), Issue 3, pg(s) 122-125.uk_UA
dc.typeThesisuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу