Показати скорочений опис матеріалу
Yurchenko I.V. Feature Detection Methods in Image Recognition Problems on Python // International Scientific Conference “Modern Systems of Science and Education in the USA, EU and Postsoviet Countries ‘2021”. Conference Proceedings (February, 2021).– «ISE&E» & SWorld in conjunction with KindleDP Seattle, Washington, USA.– P.25-28.
dc.contributor.author | Yurchenko, Igor Valeryjovych | |
dc.date.accessioned | 2021-11-16T07:05:08Z | |
dc.date.available | 2021-11-16T07:05:08Z | |
dc.date.issued | 2021-02 | |
dc.identifier.isbn | 979-8-7283228-1-8 | |
dc.identifier.issn | 2709-2267 | |
dc.identifier.other | DOI: 10.30888/2709-2267.2021-5 | |
dc.identifier.uri | https://www.sworld.com.ua/konferus05/sbor-us5.pdf | |
dc.identifier.uri | https://archer.chnu.edu.ua/xmlui/handle/123456789/1034 | |
dc.description | None | uk_UA |
dc.description.abstract | It is described an implementation of the “Histogram of Oriented Gradients” (HOG) feature detecting algorithm; the construction of classifiers for machine learning problems is considered and Python language tools (Scikit-Learn library) have developed a step-by-step pattern recognition algorithm using the HOG feature detection method and the SVM-classifier; the work of SVM is compared with the naive Bayesian classifier. | uk_UA |
dc.description.sponsorship | None | uk_UA |
dc.language.iso | other | uk_UA |
dc.publisher | «ISE&E» & SWorld in conjunction with KindleDP Seattle, Washington, USA. | uk_UA |
dc.subject | histogram of oriented gradients, pattern recognition algorithm, Scikit-Learn library | uk_UA |
dc.title | Yurchenko I.V. Feature Detection Methods in Image Recognition Problems on Python // International Scientific Conference “Modern Systems of Science and Education in the USA, EU and Postsoviet Countries ‘2021”. Conference Proceedings (February, 2021).– «ISE&E» & SWorld in conjunction with KindleDP Seattle, Washington, USA.– P.25-28. | uk_UA |
dc.type | Article | uk_UA |
Долучені файли
Даний матеріал зустрічається у наступних фондах
-
Наукові праці
Наукові публікації співробітників факультету