Показати скорочений опис матеріалу

dc.contributor.authorYurchenko, Igor Valeryjovych
dc.date.accessioned2021-11-16T07:05:08Z
dc.date.available2021-11-16T07:05:08Z
dc.date.issued2021-02
dc.identifier.isbn979-8-7283228-1-8
dc.identifier.issn2709-2267
dc.identifier.otherDOI: 10.30888/2709-2267.2021-5
dc.identifier.urihttps://www.sworld.com.ua/konferus05/sbor-us5.pdf
dc.identifier.urihttps://archer.chnu.edu.ua/xmlui/handle/123456789/1034
dc.descriptionNoneuk_UA
dc.description.abstractIt is described an implementation of the “Histogram of Oriented Gradients” (HOG) feature detecting algorithm; the construction of classifiers for machine learning problems is considered and Python language tools (Scikit-Learn library) have developed a step-by-step pattern recognition algorithm using the HOG feature detection method and the SVM-classifier; the work of SVM is compared with the naive Bayesian classifier.uk_UA
dc.description.sponsorshipNoneuk_UA
dc.language.isootheruk_UA
dc.publisher«ISE&E» & SWorld in conjunction with KindleDP Seattle, Washington, USA.uk_UA
dc.subjecthistogram of oriented gradients, pattern recognition algorithm, Scikit-Learn libraryuk_UA
dc.titleYurchenko I.V. Feature Detection Methods in Image Recognition Problems on Python // International Scientific Conference “Modern Systems of Science and Education in the USA, EU and Postsoviet Countries ‘2021”. Conference Proceedings (February, 2021).– «ISE&E» & SWorld in conjunction with KindleDP Seattle, Washington, USA.– P.25-28.uk_UA
dc.typeArticleuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу