dc.contributor.author | Городецький, Василь Васильович | |
dc.contributor.author | Мартинюк, Ольга Василівна | |
dc.date.accessioned | 2021-11-22T19:10:54Z | |
dc.date.available | 2021-11-22T19:10:54Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Horodets’kyi V.V., Martynyuk O.V. Approximate Solutions of One Abstract Cauchy Problem // Journal of Mathematical Sciences (United States). 2021. – Volume 253, Issue 2. P. 230-241.https://link.springer.com/article/10.1007%2Fs10958-021-05224-6 | uk_UA |
dc.identifier.issn | 1573-8795 | |
dc.identifier.issn | 1072-3374 | |
dc.identifier.uri | https://archer.chnu.edu.ua/xmlui/handle/123456789/2196 | |
dc.description.abstract | We find approximate solutions of the Cauchy problem for a differential-operator equation of hyperbolic type with degeneration in a Hilbert space. In terms of these approximations, we give a characteristic of the Gevrey classes for a nonnegative self-adjoint operator. | uk_UA |
dc.description.sponsorship | Алгебри та інформатики | uk_UA |
dc.language.iso | en_US | uk_UA |
dc.publisher | Springer | uk_UA |
dc.subject | Cauchy problem, differential-operator equation, nonnegative self-adjoint operator | uk_UA |
dc.title | Approximate Solutions of One Abstract Cauchy Problem | uk_UA |
dc.type | Article | uk_UA |