Показати скорочений опис матеріалу
МОДЕЛЮВАННЯ ДИНАМІЧНИХ ПРОЦЕСІВ МЕТОДОМ ГІБРИДНОГО ІНТЕГРАЛЬНОГО ПЕРЕТВОРЕННЯ ТИПУ ЕЙЛЕРА-ФУР’Є-ЕЙЛЕРА НА СЕГМЕНТІ
dc.contributor.author | Lenyuk, Oleg | |
dc.contributor.author | Nikitina, Olga | |
dc.contributor.author | Shynkaryk, Mykola | |
dc.date.accessioned | 2023-11-23T15:27:57Z | |
dc.date.available | 2023-11-23T15:27:57Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ленюк О.М., Нікітіна О.М., Шинкарик М.І. Моделювання динамічних процесів методом гібридного інтегрального перетворення типу Ейлера-Фур’є-Ейлера на сегменті // Прикладні питання математичного моделювання. Т.5, № 2. – Херсон: ХНТУ, 2022. – С. 27-32. | uk_UA |
dc.identifier.issn | 2618-0332 | |
dc.identifier.issn | 2618-0340 | |
dc.identifier.uri | https://archer.chnu.edu.ua/xmlui/handle/123456789/8101 | |
dc.description.abstract | На сучасному етапі науково-технічного прогресу, особливо у зв'язку з широким використанням композит-них матеріалів, існує нагальна потреба у вивченні фізико-технічних характеристик таких матеріалів, що знаходяться в різних умовах експлуатації, що математично призводить до задачі розв’язування сепаратної системи диференціальних рівнянь другого порядку на кусково-однорідному інтервалі з відповідними початковими та крайовими умовами, зокрема, задача динаміки математично призводить до побудови розв’язку сепаратної системи диференціальних рівнянь з частинними похідними гіперболічного типу.Одним із ефективних методів побудови інтегральних зображень аналітичних розв’язків алгоритмічного характеру задач математичної фізики є метод гібридних інтегральних перетворень.У цій роботі побудовано розв’язок задачі динаміки на трискладовому сегменті [0;R3] з двома точками спряження методом гібридного інтегрального перетворення Ейлера-Фур’є-Ейлера.Задача динаміки на трискладовому сегменті математично призводить до побудови обмеженого розв’язку сепаратної системи трьох диференціальних рівнянь з частинними похідними гіперболічного типу з відповід-ними початковими умовами, умовами спряження та крайовими умовами. Застосувавши до цієї крайової задачі гібридне інтегральне перетворення Ейлера-Фур’є-Ейлера, отримаємо задачу Коші. Знайшовши розв’язок задачі Коші, ми застосовуємо до нього обернене гібридне інтегральне перетворення Ейлера-Фур’є-Ейлера.Пряме інтегральне перетворення Ейлера-Фур’є-Ейлера на сегменті з двома точками спряження записується у вигляді матриці-рядка. Вихідна система та початкові умови записуються в матричній формі, і ми застосовуємо операторну матрицю-рядок до заданої задачі за правилом множення матриць. В результаті отримуємо задачу Коші для звичайного диференціального рівняння. Обернене перетворення Ейлера-Фур’є-Ейлера записується у вигляді операторної матриці-стовпця, і ми застосовуємо його до побудованого розв’язку задачі Коші. Після здійснення певних перетворень ми отримуємо єдиний розв’язок вихідної задачі.Побудовані розв’язки крайових задач мають алгоритмічний характер, що дозволяє використовувати їх як у теоретичних дослідженнях, так і в числових розрахунках. | uk_UA |
dc.language.iso | other | uk_UA |
dc.publisher | Прикладні питання математичного моделювання | uk_UA |
dc.subject | гібридний диференціальний оператор | uk_UA |
dc.subject | задача динаміки | uk_UA |
dc.subject | гібридне інтегральне перетворення | uk_UA |
dc.title | МОДЕЛЮВАННЯ ДИНАМІЧНИХ ПРОЦЕСІВ МЕТОДОМ ГІБРИДНОГО ІНТЕГРАЛЬНОГО ПЕРЕТВОРЕННЯ ТИПУ ЕЙЛЕРА-ФУР’Є-ЕЙЛЕРА НА СЕГМЕНТІ | uk_UA |
dc.title.alternative | MODELING OF DYNAMIC PROCESSES BY THE METHOD OF HYBRID INTEGRAL TRANSFORM OF EULER-FOURIER-EULER TYPE ON THE SEGMENT | uk_UA |
dc.type | Article | uk_UA |
Долучені файли
Даний матеріал зустрічається у наступних фондах
-
Наукові праці
Наукові публікації співробітників факультету