Показати скорочений опис матеріалу

dc.contributor.authorMykhaylyuk, Volodymyr
dc.contributor.authorPLiev, Marat
dc.contributor.authorPopov, Mikhail
dc.date.accessioned2021-11-21T12:33:13Z
dc.date.available2021-11-21T12:33:13Z
dc.date.issued2021
dc.identifier.citationMykhaylyuk V., Pliev M., Popov M.The lateral order on Riesz spaces and orthogonally additive operators, Positivity 25, (2021), 291-327..uk_UA
dc.identifier.issn1572-9281 (Print), 1385-1292 (Online)
dc.identifier.urihttps://archer.chnu.edu.ua/xmlui/handle/123456789/2009
dc.description.abstractThe paper contains a systematic study of the lateral partial order ⊑ in a Riesz space (the relation x⊑y means that x is a fragment of y) with applications to nonlinear analysis of Riesz spaces. We introduce and study lateral fields, lateral ideals, lateral bands and consistent subsets and show the importance of these notions to the theory of orthogonally additive operators, like ideals and bands are important for linear operators. We prove the existence of a lateral band projection, provide an elegant formula for it and prove some properties of this orthogonally additive operator. One of our main results (Theorem 7.5) asserts that, if D is a lateral field in a Riesz space E with the intersection property, X a vector space and T0:D→X an orthogonally additive operator, then there exists an orthogonally additive extension T:E→X of T0. The intersection property of E means that every two-point subset of E has an infimum with respect to the lateral order. In particular, the principal projection property implies the intersection property.uk_UA
dc.description.sponsorshipnouk_UA
dc.language.isoenuk_UA
dc.publisherSpringeruk_UA
dc.relation.ispartofseries25;291-327
dc.subjectRiesz spaces, Fragments, Orthogonally additive operators, Laterally continuous operatorsuk_UA
dc.titleThe lateral order on Riesz spaces and orthogonally additive operatorsuk_UA
dc.typeArticleuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу