• українська
    • English
  • English 
    • українська
    • English
  • Login
View Item 
  •   ARCher Home
  • Факультет математики та інформатики
  • Наукові праці
  • View Item
  •   ARCher Home
  • Факультет математики та інформатики
  • Наукові праці
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A characterization of the uniform convergence points set of some convergent sequence of functions

Thumbnail
View/Open
Work171019-r2.pdf (88.90Kb)
Date
2021
Metadata
Show full item record
Abstract
We characterize the uniform convergence points set of a pointwisely convergent sequence of real-valued functions defined on a perfectly normal space. We prove that if $X$ is a perfectly normal space which can be covered by a disjoint sequence of dense subsets and $A\subseteq X$, then $A$ is the set of points of the uniform convergence for some convergent sequence $(f_n)_{n\in\omega}$ of functions $f_n:X\to \mathbb R$ if and only if $A$ is $G_\delta$-set which contains all isolated points of $X$. This result generalizes a theorem of J\'{a}n Bors\'{i}k published in 2019.
URI
https://archer.chnu.edu.ua/xmlui/handle/123456789/2269
Collections
  • Наукові праці

ARCher software copyright © 2021  ChNU
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of ARCherCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

ARCher software copyright © 2021  ChNU
Contact Us | Send Feedback
Theme by 
Atmire NV